

Sentilo Documentation

Contents:

	Setup

	Quickstart

	API Docs

	Architecture

	Integrations

	Catalog and Maps

	Multi Tenant

	Clients

	Technical FAQ

	Platform Testing

	Use a Virtual Machine

Setup

This guide describes how to: download, configure, compile and install
the last version of Sentilo in your own runtime environment. Moreover,
it details which are the infraestructure elements necessary for running
Sentilo and how should be their default configuration settings. It’s
assumed you have the skils to configure and install the necessary
sofware base(Operating System, Maven,JDK, Mongo DB, Redis, etc).

The main topics are:

	Prerequisites: describes the software elements that have to be
installed before download the code.

	Download and build: explains the steps to obtain the Sentilo
code, to adapt it and how to build the platform artifacts.

	Platform infraestructure: describes the mandatory infraestructure
components for running Sentilo and its default configuration
settings.

	Deploy the artifacts: describes the necessary steps to deploy all
the Sentilo modules

Prerequisites

Sentilo uses Maven as a mechanism for building and managing the
dependencies of the platform. In order to build Sentilo, it is
necessary to ensure the next set of prerequisites:

	JDK 1.8.x +

	Git (optional)

	Maven 3 +

	Ensure that the the Java SDK and Maven executables are accessible
using your PATH environment variable.

Download and build code

The Sentilo code must be downloaded from Github. Once downloaded, you
can build it using a script named buildSentilo.sh which constructs the
Sentilo artifacts “out-of-the-box”.

Download the source code from Github

The source code of the project can be obtained from git, cloning the
remote project in a local directory named sentilo:

git clone https://github.com/sentilo/sentilo.git sentilo

An alternative method is to download a ZIP file from github repository
and decompress it in a folder named sentilo:

https://github.com/sentilo/sentilo/archive/master.zip

In both cases, we will finally have a new directory named sentilo with
the source code.

Compiling and build artifacts

Without changing the default configuration

If you want to build Sentilo out-of-the-box (i.e. build all artifacts
that define the Sentilo platform without changing any of the default
settings that are defined), we distribute a script named
./scripts/buildSentilo.sh which can be used to build Sentilo from the
command line.

This script compiles the code and build the artifacts from scratch, but
it doesn’t deploy them in the excution environments. This process must
be done manually by different reasons, for example:

	The deployment environment could be distributed in different servers.
In example, Tomcat server and Pub/Subscribe server.

	it’s not required to install all the components, like the relational
database agent.

Changing default settings

If you want modify the code before to build it, you should import it
into an Eclipse workspace with maven plug-in installed. Below we explain
how to do it by using the M2E plugin.

	Open the Eclipse workspace to import the code:

	Go to File> Import> Existing Maven Projects

	Select ./sentilo as the root directory

	Select all projects and import

Warning: be sure that JDK 1.8, or later, is correctly configured in
your Eclipse environment.

After modifying the code, to compile and build the artifacts, our
recommendation is to use the abovementioned* buildSentilo* script.

Platform infrastructure

Before describing how to install all the Sentilo components, we’re going
to explain how to configure each element of the infrastructure.

Sentilo uses the following infrastructure elements (they are grouped
into two categories):

	Mandatory

	Redis 4.0.11

	MongoDB 4.0.1

	Tomcat 8.5.32 +

	Optional

	MySQL 5.5.x (Sentilo has been tested on MySQL 5.5.34 but you could
use your favourite RDBMS) It is only necessary if you want to
install the relational agent

	Elasticsearch 5+ It is only necessary if you want to install
the activity-monitor agent.

	openTSDB 2.2.0 + It is only necessary if you want to install the
historian agent

You must ensure that you have all these elements installed properly (you
can find information on how to install them in each provider site).

Below we explain the default settings for each Sentilo module.

Default settings

Sentilo configuration uses the Spring and Maven profiles to allow its
customization depending on the runtime environment. By default, the
platform comes with a predefined profile named dev, which considers
that each of these infrastructure elements are installed on the same
machine and listening in the following ports:

	Redis: 6379

	MongoDB: 27017

	Tomcat: 8080

	MySQL: 3306

	Elasticsearch: 9200

	openTSDB: 4242

All these settings can be found in the subdirectory
/src/main/resources/properties of each platform’s module.

Redis settings

Sentilo default settings consider Redis will be listening on port 6379,
host 127.0.0.1, and with the parameter
requirepass [http://redis.io/commands/AUTH] enabled and with value
sentilo.

If you change this behaviour, you need to modify the following
properties:

jedis.pool.host=127.0.0.1
jedis.pool.port=6379
jedis.pool.password=sentilo

which are configured in the following files:

sentilo-platform/sentilo-platform-service/src/main/resources/properties/jedis-config.properties
sentilo-agent-alert/src/main/resources/properties/jedis-config.properties
sentilo-agent-relational/src/main/resources/properties/jedis-config.properties
sentilo-agent-location-updater/src/main/resources/properties/jedis-config.properties

MongoDB settings

Sentilo default settings consider MongoDB will be listening on
127.0.0.1:27017, and requires an existing database named sentilo,
created before starting the platform, with authentication
enabled [http://docs.mongodb.org/v2.4/core/access-control/] and with
login credentials preconfigured as sentilo/sentilo (username~:sentilo,
password~:sentilo).

If you change this behaviour, you need to modify following properties:

catalog.mongodb.host=127.0.0.1
catalog.mongodb.port=27017
catalog.mongodb.user=sentilo
catalog.mongodb.password=sentilo

configured in the following files:

sentilo-agent-alert/src/main/resources/properties/catalog-config.properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties

Data load

Moreover, you need to load on sentilo database the basic set of data
needed to run the platform. The data include, among other things:

	An user admin: user for log in into the catalog webapp as
administrator.

	An user sadmin: user for log in into the catalog webapp with role
super-admin.

	A default sentilo tenant: used to configure the default viewer
parameters (center, zoom, …) from the catalog web app.

	An entity sentilo-catalog: internal app used by the platform to
synchronize information between its components.

	An user platform_user: internal user used by the platform to
synchronize information between its components.

To do this, you must load the data defined in the file:

./scripts/mongodb/init_data.js

For example, in your MongoDB machine, you should execute the following
command from the directory where the file is located:

mongo -u sentilo -p sentilo sentilo init_data.js

Remember:

Please keep in mind that data defined in the previous file contains
default passwords and tokens (which are recommended for run Sentilo in a
test environment). In order to avoid compromissing your platform, we
recommend to change them before installing Sentilo in a production
environment.

After change their values in the init_data.js and load them on
MongoDB, and before compiling and building Sentilo, you will have to
modify the following properties:

rest.client.identity.key=c956c302086a042dd0426b4e62652273e05a6ce74d0b77f8b5602e0811025066
catalog.rest.credentials=platform_user:sentilo

configured in the following files:

sentilo-agent-alert/src/main/resources/properties/platform-client-config.properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties
sentilo-platform/sentilo-platform-service/src/main/resources/properties/integration.properties

Test data load

In order to validate the correct installation of the platform, we could
load a set of test data. These data includes, among other things: sensor
types, component types, apps and providers.

These data is defined in the file:

./scripts/mongodb/init_test_data.js

and, as pointed aout above, you should run the following command to load
it:

mongo -u sentilo -p sentilo sentilo init_test_data.js

MySQL settings

Remember:

This software is mandatory only if you want to export the published
events to a relational database using the specific agent. Otherwise, you
can skip this step. Please, check this out for
more info.

Sentilo default settings consider MySQL server will be listening on
127.0.0.1:3306, and requires an existing database named sentilo,
created before starting the platform, with authentication enabled and
accessible using credentials sentilo_user/sentilo_pwd
(username~:sentilo_user, password~:sentilo_pwd).

If you change this behaviour, you need to modify the following
properties:

sentiloDs.jdbc.driverClassName=com.mysql.jdbc.Driver
sentiloDs.url=jdbc:mysql://127.0.0.1:3306/sentilo
sentiloDs.username=sentilo_user
sentiloDs.password=sentilo_pwd

configured in the file:

sentilo-agent-relational/src/main/resources/properties/relational-config.properties

Creating the tables

Once we have MySQL configured, and the database sentilo created, the
next step is to create the database tables required to persist
historical platform data.

At the following directory of your Sentilo installation:

sentilo-agent-relational/src/main/resources/bd

you’ll find the script to create these tables.

Tomcat settings

Sentilo default settings consider Tomcat will be listening on
127.0.0.1:8080.

If you change this behaviour, you need to modify the following property:

catalog.rest.endpoint=http://127.0.0.1:8080/sentilo-catalog-web/

configured in the following files:

sentilo-platform/sentilo-platform-service/src/main/resources/properties/integration.properties
sentilo-agent-location-updater/src/main/resources/properties/integration.properties

Your Tomcat should also be started with the user timezone environment
variable set as UTC. To set Timezone in Tomcat, the startup script (e.g.
catalina.sh or setup.sh) must be modified to include the following
code:

-Duser.timezone=UTC

Elastisearch settings

Remember:

It is only necessary if you want to index into Elasticsearch all the
published events using the specific agent. Otherwise, you can skip this
step. Please, check this out for more
info.

Sentilo default settings consider Elasticsearch server will be listening
on localhost:9200. If you change this behaviour, you need to modify the
following property:

elasticsearch.url=http://localhost:9200

configured in the following file:

sentilo-agent-activity-monitor/src/main/resources/properties/monitor-config.properties

openTSDB settings

Remember:

It is only necessary if you want to store into openTSDB all the
published events using the specific agent. Otherwise, you can skip this
step. Please, check this out for more
info.

Sentilo default settings consider openTSDB server will be listening on
127.0.0.1:4242. If you change this behaviour, you need to modify the
following property:

opentsdb.url=http://127.0.0.1:4242

configured in the following file:

sentilo-agent-historian/src/main/resources/properties/historian-config.properties

Subscription/publication platform settings

Sentilo default settings consider subscription/publication server
(a.k.a. PubSub server) will be listening on 127.0.0.1:8081

If you change this behaviour, you need to modify the following
properties:

port=8081
rest.client.host=http://127.0.0.1:8081

configured in the following files:

sentilo-platform/sentilo-platform-server/src/main/resources/properties/config.properties
sentilo-catalog-web/src/main/resources/properties/catalog-config.properties

Configuring logs

Sentilo uses slf4j and logback as trace frameworks. The
configuration can be found in logback.xml file, located in the
subdirectory src/main/resources of sentilo-common module of the
platform.

By default, all platform logs are stored in the directory
/var/log/sentilo

Platform installation

Once you have downloaded the code and you have modify, compile and built
it, the next step is to deploy Sentilo artifacts. The platform has five
artifacts:

	Web Application Catalog (is mandatory)

	Server publication and subscription (is mandatory)

	Internal agents (are optional):

	alarms agent

	relational database agent

	location updater agent

Installing the Web App Catalog

After build Sentilo, to install the Web App, you just need to deploy the
WAR artifact in your Tomcat server, i.e., copy the WAR artifact into the
webapps subdirectory of your Tomcat server.

You will find the WAR artifact at the following subdirectory:

./sentilo-catalog-web/target/sentilo-catalog-web.war

Installing subscription/publication server

After build Sentilo, to install the PubSub server, you need to follow
the following steps:

	Into the directory
./sentilo-platform/sentilo-platform-server/target/appassembler
you’ll find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script (sentilo-server) needed to
initialize the process (there are two scripts, one for Linux systems
and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-server).

	Once copied, for starting the process you just need to run the
script:

$sentilo-server/bin/sentilo-server

Installing agents

As have been mentioned previously, all agents are optional and you are
free to choose which of them will be deployed, depending on your
specific needs. Agents are internal modules oriented to expand the
platform functionality without having to alter its core. You will find
more information about them in the Integrations
section of our documentation.

We have currently seven core agents:

	Alarms agent is responsible for processing each internal alert
defined in the catalog and publish a notification (a.k.a. alarm)
when any of the configured integrity rules are not met. You need this
agent if you want to make use of the internal alerts functionality
provided by Sentilo.

	Relational agent is responsible for store all information
received from the PubSub server into a set of relational databases.
You need this agent if you want to persist data published in Sentilo
in a relational database too.

	Location updater agent is responsible for updating automatically
the component location according to the location of the published
observations.

	Historian agent is responsible for store all information received
from the PubSub server into a time series database. You need this
agent if you want to persist data published in Sentilo in openTSDB
too.

	Activity monitor agent is responsible for index all information
received from the PubSub server into a search engine server. You need
this agent if you want to store data published in Sentilo into
Elasticsearch too.

	Kafka agent Publishes events to Kafka.

	Federation agent Synchronizes two independent Sentilo instances,
publishing selected observations from a set of providers to another Sentilo.

Remember: As mentioned before, Sentilo always store all published
events into Redis.

All the agents are installed in a similar manner to the PubSub server,
as described below.

Installing alarms agent

After build Sentilo, to install the alarms agent, you need to follow the
following steps:

	Into the directory ./sentilo-agent-alert/target/appassembler you’ll
find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script (sentilo-agent-alert-server)
needed to initialize the process (there are two scripts, one for
Linux systems and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-agent-alert).

	Once copied, for starting the process you just need to run the
following script:

$sentilo-agent-alert/bin/sentilo-agent-alert-server

Installing relational agent

As mentioned before, this agent exports all the received data, orders
and alarms to a database named sentilo and located in the MySQL
server.

These configuration settings are defined in the files:

./sentilo-agent-relational/src/main/resources/properties/subscription.properties
./sentilo-agent-relational/src/main/resources/properties/relational-client-config.properties

To modify this behavior, just follow the instructions given in the
properties files.

Additionally, with the purpose of optimizing the persistence process,
insert process is done in batch mode and uses a retries parameter
aimed to minimize any error. By default, the batch size is fixed to 10
records and the retries parameter is defined to 1.

This behaviour can be changed editing the file:

./sentilo-agent-relational/src/main/resources/properties/relational-client-config.properties

and updating the following lines:

Properties to configure the batch update process
relational.batch.size=10
relational.batch.workers.size=3
relational.batch.max.retries=1

After building Sentilo, to install the relational agent, you only need
to follow the following steps:

	Into the directory ./sentilo-agent-relational/target/appassembler
you’ll find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script
(sentilo-agent-relational-server) needed to initialize the process
(there are two scripts, one for Linux systems and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-agent-relational).

	Once copied, for starting the process you just need to run the
script:

$sentilo-agent-relational/bin/sentilo-agent-relational-server

Installing location updater agent

After building Sentilo, to install the location updater agent, you need
to follow the following steps:

	Into the directory
./sentilo-agent-location-updater/target/appassembler you’ll find
two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script
(sentilo-agent-location-updater-server) needed to initialize the
process (there are two scripts, one for Linux systems and one for
Windows)

	Copy these two directories in the root directory where you want to
install this component (for example:
/opt/sentilo-agent-location-updater).

	Once copied, for starting the process you just need to run the
script:

$sentilo-agent-location-updater/bin/sentilo-agent-location-updater-server

Installing historian agent

As mentioned before, this agent exports all the received events to a
openTSDB server.

This agent works in a similar way to the relational agent: insert
process is done in batch mode and uses a retries parameter aimed to
minimize any error. By default, the batch size is fixed to 10 records
and the retries parameter is defined to 1.

This behaviour can be changed editing the file:

./sentilo-agent-historian/src/main/resources/properties/historian-config.properties

and updating the following lines:

Properties to configure the batch update process
batch.size=10
batch.workers.size=3
batch.max.retries=1

After building Sentilo, to install the historian agent, you only need to
follow the following steps:

	Into the directory ./sentilo-agent-historian/target/appassembler
you’ll find two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script
(sentilo-agent-historian-server) needed to initialize the process
(there are two scripts, one for Linux systems and one for Windows)

	Copy these two directories in the root directory where you want to
install this component (for example: /opt/sentilo-agent-historian).

	Once copied, for starting the process you just need to run the
script:

$sentilo-agent-historian/bin/sentilo-agent-historian-server

Installing activity-monitor agent

As mentioned before, this agent exports all the received events to
elasticsearch server.

This agent works in a similar way to the relational agent: insert
process is done in batch mode and uses a retries parameter aimed to
minimize any error. By default, the batch size is fixed to 10 records
and the retries parameter is defined to 1.

This behaviour can be changed editing the file:

./sentilo-agent-historian/src/main/resources/properties/monitor-config.properties

and updating the following lines:

Properties to configure the batch update process
batch.size=10
batch.workers.size=3
batch.max.retries=1

After building Sentilo, to install the activity-monitor agent, you only
need to follow the following steps:

	Into the directory
./sentilo-agent-activity-monitor/target/appassembler you’ll find
two subdirectories named repo and bin:

	repo directory contains all libraries needed to run the process

	bin directory contains the script
(sentilo-agent-activity-monitor-server) needed to initialize the
process (there are two scripts, one for Linux systems and one for
Windows)

	Copy these two directories in the root directory where you want to
install this component (for example:
/opt/sentilo-agent-activity-monitor).

	Once copied, for starting the process you just need to run the
script:

$sentilo-agent-activity-monitor/bin/sentilo-agent-activity-monitor-server

Enable multi-tenant instance

In order to enable multi-tenant feature you need to ensure that your
Sentilo version is at least 1.5.0. Otherwise you will have to
upgrade [https://github.com/sentilo/sentilo/wiki/How-to-upgrade-Sentilo]
your Sentilo instance.

Once the above requirement is fulfilled, you only need to do the
following steps:

Modify your Tomcat startup script

You should modify your Tomcat startup script (e.g
%TOMCAT_HOME%/bin/catalina.sh or %TOMCAT_HOME%/bin/setenv.sh) to add
a new JVM property:

-Dsentilo.multitenant=true

Once you have added the JVM property, you must restart your Tomcat
server.

Edit the Catalog web.xml file

The next step is to edit the Catalog file web.xml located at:

sentilo-catalog-web/src/main/webapp/WEB-INF/web.xml

You will find some lines that are commented into this file which are
needed to enable the multi-tenant feature. Therefore you should
uncomment them:

<!--
 <filter>
 <filter-name>UrlRewriteFilter</filter-name>
 <filter-class>org.tuckey.web.filters.urlrewrite.UrlRewriteFilter</filter-class>
 <init-param>
 <param-name>logLevel</param-name>
 <param-value>slf4j</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>tenantInterceptorFilter</filter-name>
 <filter-class>org.sentilo.web.catalog.web.TenantInterceptorFilter</filter-class>
 </filter>
-->

<!--
 <filter-mapping>
 <filter-name>tenantInterceptorFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>UrlRewriteFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>
-->

Once you have uncomment the above lines, you should recompile the
Catalog webapp module and redeploy it into your Tomcat server.

You will find more information about this feature in the
Multi-Tenant section of our documentation.

Enable anonymous access to REST API

By default, anonymous access to REST API is disabled which means that
all requests to REST API must be identified with the
identity_key header.

From version 1.5, we provide a new feature that allows anonymous access
to REST API but only for read authorized data of your Sentilo instance
(here authorized means that you should configure your Catalog to
define which data could be accessed anonymously from REST requests).

In order to enable anonymous access you should modify the following
properties:

Properties to configure the anonymous access to Sentilo
enableAnonymousAccess=false
anonymousAppClientId=

configured in the following file:

sentilo-platform/sentilo-platform-server/src/main/resources/properties/config.properties

This configuration has not mystery: if anonymous access is enabled
(enableAnonymousAccess=true) then all anonymous requests to REST API
are internally considered as is they have been performed by the
application client identified by the anonymousAppClientId property
value (this application client should exists into your Sentilo Catalog),
and therefore these requests will have the same data restrictions as the
requests performed by this client application.

What next?

Check the Quick Start Page or Platform
Testing page.

Quickstart

Prequisites

After checking the Sentilo Setup. No need to setup any
agents or other optional components such as Elasticsearch or OpenTSDB.

You should have 4 components up & running:

	Redis Server

	MongoDB

	Sentilo API, running at http://127.0.0.1:8081

	Sentilo Catalog, running at http://127.0.0.1:8080/sentilo-catalog-web

Create a Provider, Component and a Sensor

In order to create a publication of sensor data, we have to create first
the Provider, Component and a Sensor.

We’ll do that from the catalog application as superuser, using the
admin/admin credentials.

A provider is an entity that manages devices (sensors). We’ll have to
create one from the menu “Providers” -> “New Provider”

A component is a device that contains one or more sensors (such as a
Raspberry PI). We’ll have to create one from the menu “Components” ->
“New Component”. Make sure you select the provider created above.

Finally, we’ll have to create a sensor from the menu “Sensors” -> “New
Sensor”. Make sure you select the component created above. Please select
a numeric type of sensor.

Publish an Observation

In order to publish an observation, we’ll use Sentilo’s HTTP REST API.
For that you can use the curl program of some more graphical tool such
as Postman [https://getpostman.com]:

curl -X PUT -H "IDENTITY_KEY: <your provider's token>" http://<your sentilo url>/data/<your provider>/<your sensor>/42.0

The server should respond with HTTP status 200.

Read your Observations

curl -X GET -H "IDENTITY_KEY: <YOUR_KEY>" http://<your sentilo url>/data/<your provider>/<your sensor>

The response would be similar to:

{
 "observations": [
 {
 "value": "42.0",
 "timestamp": "22/11/2016T11:52:28",
 "location": ""
 }
]
}

Also, on the “Latest Data” tab of the sensor’s page in the catalog will
appear your value, in this case, a 42.0.

What next?

Check the API documentation here.

API Docs

Contents:

	General Model

	Security

	Services

The Application Programming Interface (API) of Sentilo defines a set of commands,
functions and protocols that must be followed by who wants to interact with the system externally.

This area defines the Application Programming Interface (API), that any sensor or application must use to interact
with the platform.

The starting capacities of the platform related to its external interface are:

	Allows to register applications/modules and providers/sensors in the platform (Catalog).

	Allow to applications/modules and sensors subscribe to services defined in the catalog as well as post events occurring (Publish/Subscribe).

	Allow you to send information from sensors to applications/modules (Data).

	Allows to send orders from applications/modules to sensors (Order).

General Model

Intro

Sentilo offers an open source API based on REST interfaces.

Representational State Transfer (REST) is a style of architecture that
exploits existing technologies and protocols of the World Wide Web
(WWW).

The communication from external elements with Sentilo will be through
HTTP protocol (Hypertext Transfer Protocol).

Here, briefly describes the concepts of REST terminology that Sentilo
will use:

	Resources: Elements of the information system.

	Identifiers: Unique name that identifies a resource within the
system.

	Representations: Format of the exchanged data.

	Operations: Actions that can be performed on a resource.

	Response codes: Result of the operation.

Resources

Resources, or pieces of information of Sentilo Platform, are:

	Sensor: item of hardware or software with the ability to generate
an observation(data).

	Component: corresponding to a element of hardware or software,
with geospatial location (fixed or mobile) who could be composed by 1
or more Sensors.

	Provider: entity that represents a grup of components and allows
them to communicate with Sentilo for sending data and receive
commands.

	Client application / Module: entity that consumes the data
processed by the platform.

The actions that can be carried out are:

	Applications / Modules

	Register on the platform, but always from the administration
console.

	Send orders to providers/sensors (order service).

	Receive data from provider/sensors (data service).

	Subscribe to system events (subscribe service).

	Providers / Sensors

	Register on the platform (catalog service).

	Subscribe to system events (subscribe service).

	Publish data (data service).

Sensors and components have always a an associated typology.

Identifier

Unique name that identifies a resource in the system.

In the case of Sentilo, it is an URLs (Uniform Resource Locator).

The base URL is composed as follows:

protocol://domain:port/service

and consists of the following parts:

	communication protocols: HTTP or HTTPS.

	domain: Platform server API domain (e.g. localhost).

	port: Port defined for communications with the server API
(e.g. 8081).

	service: catalog, data, order, etc..

Every service has a custom URL format as especified for each services.

Representations

Data formats that will support the platform are: JSON (initial
version) and XML (in a future releases).

The default format used by the platform is JSON.

To specify a different format, you must add the parameter “format”
in the request, as shown in the following example:

http://<your_api_server.com>/service/<id_provider>?format=XML

JSON format

Example data in JSON format:

{"observations":[
 {"value":"12.3","timestamp":"17/09/2012T12:34:45"}
]}

XML format

Example data in XML format:

<observation>
 <value>12.3</value>
 <timestamp>17/09/2012T12:34:45</timestamp>
</observation>

Operators

The platform operators are the HTTP protocol methods.

In general, the operation associated with the operations used by Sentilo
are:

	GET: Request information.

	POST: Send new data.

	PUT: Update existing data.

	DELETE: Erase data.

The platform discriminates the action you want perform from the method
used and by the service, provider or sensor specified in the URL
invoked.

Reply

The response to a request to the platform is managed through the
response HTTP status codes.

	Error Code

	HTTP

	Description

	200

	Success

	Request accepted and
processed correctly

	4xx

	Client Error

	Error in request
(Wrong format,
forbidden mandatory
parameters, …)

	401

	Unauthorized

	Unauthorized request:
empty or invalid
credential

	403

	Forbidden

	Not authorized for
the requested action

	5xx

	Server Error

	Error processing the
request

In case of error the response body will include a description of the
problem detected, as shown in the following examples:

This payload is returned when no credential is sent:

{"code":401,"message":"Invalid credential null"}

This payload is returned when JSON payload could not be read as JSON:

{"code":400,
 "message":"SIE03-1398350628224 Bad request data: could not read JSON payload. Please review the following error and try again",
 "errorDetails":["org.sentilo.common.exception.MessageNotReadableException: Unexpected character ('o' (code 111)):"]}

Security

Securing API requests

The platform will validate any request received by the system following
the terminology AAA (Authentication,Authorization, *Accounting):

	Authentication: Identifying who is doing the request.

	Authorization: Validating that the action requested on the
resource associated can be done.

	Traceability: Auditing the action and who has performed it.

So, for each request received, the platform performs the following
actions:

	Identify the petitioner through the header HTTP.

	Check that it can do the requested action on the resource indicated.

	Register the performed action.

When necessary, the platform will check the integrity and
confidentiality of communications is ensured using HTTPS protocol.

Authentication

To identify the petitioner, the platform uses an authentication
mechanism based on tokens (Token Based Authentication).

It’s necessary to establish a distribution mechanism outside the
platform for send the tokens among the different users of the platforms
securely. Future versions of Sentilo will include this feature.

The token will be included in the request by adding a header with key
IDENTITY_KEY.

An example of a service request (GET in this case) using the curl tool:

curl --request GET --header "IDENTITY_KEY: <YOUR_KEY>" http://<your_api_server.com>/resource

In case of incorrect or invalid token , the platform will respond with
an error code 401.

Authorization

To validate the requested action on the resource indicated in the
request can be performed, the platform uses a permit system that checks
authorized entity (provider or application) is allowed to admin, write
or read in a resource.

These permissions are defined via the catalog console of the platform
and, by default, every entity is administrable by its owner.

If an action on a resource is done without the appropiate permission,
platform will return an error 403.

Securing Callbacks

If it’s necessary to secure the push requests sent by the platform,
Sentilo provides a
HMAC [http://en.wikipedia.org/wiki/Hash-based_message_authentication_code]
mechanism for the callbacks.

This mechanisms guarantees:

	That the message was sent by the platform

	That the message was not altered after sent

	That the messege is still active

As hash algorithm the system uses
SHA-512 [http://en.wikipedia.org/wiki/SHA-2]. It accepts keys of any
size, and produces a hash sequence of length 512 bits.

The target system should activate the security for callbacks when
creates the subscription specifying the secret key (see
more). This subscription
should be done using HTTPs protocol to avoid compromising the key.

After the subscription has been created, all the related requests will
include two new headers, one with the hash (Sentilo-Content-Hmac)
and another with the timestamp (Sentilo-Date), as the following
sample shows:

Sentilo-Content-Hmac:
j1OQ+fU667GQoHYHWzLBpigRjLJmRvYn53KHZhApTbrcphYWBlRPSBHkntODuqsqx11Vj8rsc7DDziiutTq/5g==
Sentilo-Date: 10/06/2014T15:27:22

The responsibility of validating the headers will be always in the
target system who is receiving the messages.

The pseudo-code to generate the HMAC token is the following:

var md5Body = MD5(body)
var endpoint = endpoint_configured_in_subscription
var secretKey = secret_key_configured_in_subscription
var currentDate = value_http_header_Sentilo-Date
var contentToSign = concatenate('POST',md5Body, 'application/json',currentDate, endpoint)
var signature = HmacSHA512(contentToSign)

return base64UrlEncode(signature)

Services

Index of differents services.

	Alarm

	Alert

	Catalog

	Data

	Order

	Subscription

Alarm

Description

The alarm service allows you to record and retrieve alarms associated
with an alert stored in the system catalog.

All requests for this service will have the following format:

http://<your_api_server.com>/alarm/<id_alert>

where id_alert identifies the alert for which you want to perform the
action. The alert always should be defined before throwing the alarm
using the Catalog or the through the
Alert service.

Actions

The available actions for this service are:

	Publish a new alarm associated with an
alert

	Retrieve the latest alarms associated with an
alert

Publish Alarm

Description

This action allows you to publish an alarm related with an alert. Once
the system receives the alarm, persists it and sends the notification to
all who are subscribed to alarms alert.

http://<your_api_server.com>/alarm/<alert_id>

	Formats

	json

	Method

	PUT

	Permission

	Writing

	Return

	No additional data is returned

Parameters

Each alarm will have its own associated information structure defined in
the generic format (JSON).

The platform only persists and transfers the information to recipients
without interpreting its contents.

	Key

	Description

	Optional

	message

	Free field

	Not

Response data

This actions does not return additional data beyond the HTTP status
code associated with each request to
the platform.

Examples

Post a new alarm associated with an alert

The following example shows how to send a request to the platform in
order to publish a new alarm associated to an alert with identifier 43:

http://<your_api_server.com>/alarm/43

and like body message:

{"message":"Threshold limit exceeded: 32"}

Please note the following:\

	(% style=“font-size: 16px; background-color: rgb(245, 245, 245);”
%)If the alert is in offline state, the server rejects the
publication.

Retrieve alarms

Description

This action allows to retrieve the latest alarms related with an alert.
In addition, the service can also specify search criterias to retrieve
alarms: filter by a given time period and/or indicate the maximum number
of alarms to be retrieved.

http://<your_api_server.com>/alarm/<alarm_id>?<parameter>=<value>

	Format

	json

	Method

	GET

	Permission

	Reading

	Return

	Alarms associated with the alert

Parameters

	Key

	Description

	Optional

	from

	Indicates the
starting of the time
period for which you
want to retrieve
alarms.

	Yes

	to

	Indicates the end of
the time period for
which you want to
retrieve alarms..

	Yes

	limit

	Specifies the maximum
number of alarms to
recover.

	Yes

Please note the following:

	The maximum number of records returned is defined in the platform
configuration. If the limit parameter has a higher value than the
configured one it will be dismissed.

	If limit parameter is not specified, it returns only one alarm.

	All dates must follow the format: dd/MM/yyyyTHH:mm:ss

Response data

In addition to the appropriate HTTP status
code, if the operation runs
properly, it will return the last alarms associated with the alert
according to your search criteria.

	Key

	Description

	Optional

	alarms

	Alarms list (message) of the alert

	Not

Each alarm (message) will be composed by the following attributes:

	Key

	Description

	Opcional

	message

	Message recorded when
the alarm was fired

	No

	timestamp

	The time in which
system received the
alarm (format
dd/MM/yyyyTHH:mm:ss)

	No

	time

	The time when the
observation was made
in milliseconds

	No

	sender

	Identifier of the
entity that issued
the alarm

	No

Examples

Retrieve the last alarm

To retrieve the latest alarm for the alert with ID 43 we do the
following request to the platform:

http://<your_api_server.com>/alarm/43

In the response we will receive:

{ "alarms":[
 {
 "message":"threshold exceeded",
 "timestamp":"08/04/2013T09:44:01",
 "time":1510561800008,
 "sender":"appDemo"
 }
]}

Recover N alarms

To retrieve the last 3 alarms for the alert with id 43 we do the
following request to the platform:

http://<your_api_server.com>/alarm/43?limit=3

In the response we will receive:

{"alarms":[
 {
 "message":"threshold exceeded: 34",
 "timestamp":"08/04/2013T09:44:01",
 "time":1510561800000,
 "sender":"appDemo"
 },
 {
 "message":"threshold exceeded: 37",
 "timestamp":"08/04/2013T09:14:01",
 "time":1510561800001,
 "sender":"appDemo"
 },
 {
 "message":"threshold exceeded: 38",
 "timestamp":"07/04/2013T23:23:10",
 "time":1510561800002,
 "sender":"appDemo"
 }
]}

Retrieve N alarms in a given period

If we want to retrieve the alarms according to a given period of time we
should do the following request:

http://<your_api_server.com>/alarm/43?limit=3&from=08/04/2013T00:00:00&to=08/04/2013T23:59:59

In response the we will receive:

{"alarms":[
 {
 "message":"threshold exceeded: 34",
 "timestamp":"08/04/2013T09:44:01",
 "time":1510561800000,
 "sender":"appDemo"
 },
 {
 "message":"threshold exceeded: 37",
 "timestamp":"08/04/2013T09:14:01",
 "time":1510561800000,
 "sender":"appDemo"
 }
]}

Alert

Description

The alert service provides methods to record, edit or retrieve alerts
definition.

All requests for this service will have the following format:

http://<your_api_server.com>/catalog/alert/<entity_id>

where entity_id is optional and should be included depending on the
operation. entity_id can be an Application or a Provider.

There are two alert types: internal and external.

The internal alerts are related to specific sensors and its logic is
defined using basic math rules or configuring an inactivity time. They
should be defined through the catalog console or by the API, but only
using the catalog token.

The related alarms are triggered always by the Sentilo platform when the
alert logic occurs.

The external alerts are defined by third party entities, which will
be the responsibles of calculating their logic and throw the related
alarms when applies.

For both cases, the Sentilo platform is responsible of publishing the
alarm for all entities subscribed to the related alert.

Actions

	The available actions for this service are:

	
	Adding alerts

	Update alerts

	Retrieve list of authorized alerts

	Remove alerts

Internal trigger types

The list of trigger types accepted by Sentilo (and their associated
expressions) are:

	Id

	Description

	Expression value

	GT

	Greater than
<expression>

	Any numerical value

	GTE

	Greater than or equal
<expression>

	Any numerical value

	LT

	Less than
<expression>

	Any numerical value

	LTE

	Less than or equal
<expression>

	Any numerical value

	EQ

	Equal <expression>

	Any value

	CHANGE

	Any change

	Not apply here

	CHANGE_DELTA

	Any variation greater
to delta
<expression>

	Any numerical value
between 0 and 100

	FROZEN

	No data received in
<expression>minut
es

	Any numerical value

The trigger types only apply for the internal alerts.

Create Alerts

Description

This action allows to register one or more new alerts in the catalog.

http://<your_api_server.com>/catalog/alert/<entity_id>

	Formats

	json

	Method

	POST

	Permission

	Writing

	Returns

	No output data

The internal alerts should be defined through the catalog console or by
the API, but only using the catalog token.

Parameters

	Key

	Description

	Optional

	alerts

	Alerts list (alert) to register

	Not

Every alert element has the following structure:

	Key

	Description

	Optional

	id

	Alert ID to register

	No

	name

	Alert name

	Yes

	description

	Alert description

	Yes

	type

	Alert type

	No

	trigger

	Trigger type

	Mandatory for
internal, not applies
for externals

	expression

	Expression to
evaluate with the
trigger

	Mandatory for
internal, not applies
for externals

	component

	ID of the component
to which the sensor
belongs

	Mandatory for
internal, not applies
for externals

	sensor

	ID of the sensor to
which the alert
applies

	Mandatory for
internal, not applies
for externals

	entity

	Related entity
identifier associated
with the alert

	Yes

Please, note the following observations:

	The ID must identify an univocal alert, e.g., 2 alerts may not have
the same ID.

	The ID must have only alphanumeric (i.e. letters and numbers) and
dashes characters, with no embedded spaces.

	The list of trigger’s types and expressions are defined by the
platform: Trigger types.

	The possible values ​​for the alert types are: INTERNAL or EXTERNAL.

	Entity parameter is not mandatory, if empty the alert will be
associated with the entity specified in the URL

Response data

This action doesn’t return additional data beyond the HTTP status
code.

Examples

Adding one external alert

If rec entity wants to register a new custom external alert with
REC_ALERT_001 identifier, to monitorize that maximum daily values for
sensor REC_001 ranged from 60 and 80, the request will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
 {"id":"REC_ALERT_001",
 "name":"REC_ALERT_001",
 "description":"Custom alert to monitorize that maximum daily values for sensor REC_001 ranged from 60 and 80",
 "type":"EXTERNAL"
 }
]}

This request will register a new external alert with ID REC_ALERT_001
and associated to rec entity (i.e. rec entity is who will publish alarms
associated to this alert).

Remember, the external alerts are defined by third party
entities(providers or applications), which will be the responsibles of
calculating their logic and throw the related alarms when applies.

Adding one internal alert

If we want to register a new internal alert with ID REC_GT_45_ALERT_001,
to monitorize that values for sensor’s rec REC_001 are greater than 45,
the request to do is the following:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
 {"id":"REC_GT_45_ALERT_001",
 "name":"REC_GT_45_ALERT_001",
 "description":"Internal alert to monitorize that values for sensor's rec REC_001 are greater than 45",
 "type":"INTERNAL",
 "trigger":"GT",
 "expression":"45",
 "component":"REC_COMP_001",
 "sensor":"REC_001"
 }
]}

This request will register a new internal alert with REC_GT_45_ALERT_001
identifier and associated to REC_001 sensor which will publish an alarm
when sensor value will be greater than 45.

This operation must be done using the catalog token.

Update Alerts

Description

This action allows to update one or more alerts in the catalog.

http://<your_api_server.com>/catalog/alert/<entity_id>

	Formats

	json

	Method

	PUT

	Permission

	Writing

	Returns

	No output data

The internal alerts should be updated through the catalog console or by
the API, but only using the catalog token.

Parameters

	Key

	Description

	Optional

	alerts

	Alerts list (alert) to update

	Not

Every alert element has the following structure:

	Key

	Description

	Optional

	id

	Alert identifier to
update

	No

	name

	New alert name

	Yes

	description

	New alert description

	Yes

	type

	Alert type

	No

	trigger

	New trigger type

	Mandatory for
internal, not applies
for externals

	expression

	New expression to
evaluate with the
trigger

	Mandatory for
internal, not applies
for externals

Please, note the following observations:

	The list of trigger’s types and expressions are defined in: Trigger
types.

	The possible values ​​for the alert type are: INTERNAL or EXTERNAL.

Response data

This action doesn’t return additional data beyond the HTTP status
code.

Examples

Update one external alert

If rec entity wants to update the external alert with REC_ALERT_001
identifier to modify its name, the request to do will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
 {"id":"REC_ALERT_001",
 "name":"REC_EXTERNAL_ALERT_001",
 "type":"EXTERNAL"
 }
]}

This request will update the external alert with REC_ALERT_001
identifier updating its name to REC_EXTERNAL_ALERT_001.

Remember, the external alerts are defined by third party
entities(providers or applications), which will be the responsibles of
calculating their logic and throw the related alarms when applies.

Update one internal alert

If we want to update the internal alert with REC_GT_45_ALERT_001
identifier to change its description, the request will be:

http://<your_api_server.com>/catalog/alert/rec

and in the body message:

{"alerts":[
 {"id":"REC_GT_45_ALERT_001",
 "type":"INTERNAL",
 "description":"New description"
 }
]}

This request will update the description of the internal alert with
REC_GT_45_ALERT_001 identifier changing its value to “New description”.

This operation must be done using the catalog token.

Retrieve Authorized Alerts

Description

This action returns the list of alerts for which the entity_id could do
a subscription, i.e., alerts that belongs to entity_id or alerts for
which entity_id has read permission over its owner. In addition, the
service also allows you to specify search criteria to filter alerts to
be retrieved: filter by alert type and / or filter by trigger type.

http://<your_api_server.com>/catalog/alert/<entity_id>?<parameter>=<value>

The entity_id is optional and can be an Application or a Provider.

	Format

	json

	Method

	GET

	Permission

	Reading

	Return

	List of authorized alerts

Parameters

	Key

	Description

	Optional

	type

	Alert’s type filter

	Yes

	trigger

	Trigger’s type filter

	Yes

Please, note the following observations:

	The list of trigger’s types available are defined by the platform:
Trigger types.

	The possible values ​​for the alert type is also defined by the
platform and are: INTERNAL, EXTERNAL.

Response data

As commented before, this action, in addition to the HTTP status
code, returns the list of alerts for
which entity_id has at least read permission.

	Key

	Description

	Optional

	alerts

	Alerts list (alert)

	Not

Every alert element has the following structure:

	Key

	Description

	Optional

	id

	Alert ID

	No

	name

	Alert name

	Yes

	description

	Alert description

	Yes

	entity

	Related entity

	No

	type

	Alert type

	No

	trigger

	Trigger type

	No, but only returned
for internal alerts

	expression

	Expression to
evaluate with the
trigger

	No, but only returned
for internal alerts

	component

	Component identifier
to which the sensor
belongs

	No, but only returned
for internal alerts

	sensor

	Sensor identifier to
which the alert
applies

	No, but only returned
for internal alerts

Examples

Request to retrieve all the authorized alerts

The following request shows an example to retrieve all the authorized
alerts for rec entity:

http://<your_api_server.com>/catalog/alert/rec

and the response will be:

{
 "alerts" : [
 {
 "id" : "REC_ALERT_001",
 "name" : "REC_ALERT_001",
 "description" : "Custom alert to monitorize that maximum daily values for sensor REC_001 ranged from 60 and 80",
 "entity" : "SAMCLA",
 "type" : "EXTERNAL"
 },
 {
 "id" : "REC_ALERT_002",
 "name" : "REC_ALERT_002",
 "description" : "Internal alert to check if S00020114-0 value is greater than 45",
 "entity" : "SAMCLA",
 "type" : "INTERNAL",
 "trigger" : "GT",
 "expression" : "45",
 "component" : "S00020114",
 "sensor" : "S00020114-0"
 }
]
}

Request to retrieve all the authorized alerts filtered by type and trigger

The following request shows an example to retrieve all internal alerts
for rec entity with trigger type equal to GT.

http://<your_api_server.com>/catalog/alert/rec?type=INTERNAL&trigger=GT

and the response will be:

{"alerts":[
 {
 "id" : "REC_ALERT_002",
 "name" : "REC_ALERT_002",
 "description" : "Internal alert to check if S00020114-0 value is greater than 45",
 "entity" : "SAMCLA",
 "type" : "INTERNAL",
 "trigger" : "GT",
 "expression" : "45",
 "component" : "S00020114",
 "sensor" : "S00020114-0"
 }
]}

Remove alerts

Description

This action allows to delete alerts from the catalog. The internal
alerts can only be deleted using the Catalog’s token or through the
Catalog console. The external alerts can only be removed using the
entity’s owner token.

http://<your_api_server.com>/catalog/alert/<entity_id>

Remember, the entity_id can be also an Application or a Provider too.

	Format

	json

	Method

	DELETE, PUT

	Permission

	Writing

	Return

	No output data

Note that this action can be invoked using two HTTP methods: PUT and
DELETE.

	DELETE will be used if we want to delete all of our alerts. It cannot
contain any body content.

	PUT will be used when we want to delete a group of alerts. We should
add the parameter method with delete value to the request . In this
case, the alerts to delete should be specified in the body message.

Parameters

The structure of input message if we want to delete a group is:

	Key

	Description

	Optional

	alertsIds

	Array of the alerts identifiers to delete

	Yes

Each element of the list corresponds to an identifier to an alert to
delete.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to delete all alerts

If the entity rec wants to delete all its alerts, the request will be:

DELETE http://<your_api_server.com>/catalog/alert/rec

This action will delete all the external alerts belonging to entity rec.
Be careful, if this request is done using the catalog token, it will
remove all the internal alerts!.

Request to delete a set of alerts

If the entity rec only wants to delete a set of alerts, the request will
be:

PUT http://<your_api_server.com>/catalog/alert/rec?method=delete

and in the body message:

{"alertsIds":["REC-ALERT-01","REC-ALERT-02"]}

Catalog

Description

The catalog service allows to register or modify your own
sensors/components or query the characteristics of a sensor or provider.

All requests for this service will have the following format:

http://<your_api_server.com>/catalog/<provider_id>

where provider_id is optional and should be included depending on the
operation.

Actions

The available actions for this service are:

	Adding components / sensors

	Update data components / sensors

	Retrieve list of providers /
sensors

	Remove components / sensors

Component types

The list of component types should be configured for each Sentilo
instance, the following list could be used as a reference for any city:

	Id

	Name

	Description

	temperature

	Temperature

	Temperature
measurement

	noise

	Soundmeter

	Sound measurement

	wind

	Anemometer

	Wind speed

	humidity

	Humidity

	Humidity measurement

	air_quality

	Air Quality

	Air Quality control

	water_quality

	Water Quality

	Water Quality control

	meteo

	Meteorology

	Weather Station

	parking

	Occupation parking

	Parking control

	luminosity

	Luminosity

	Luminosity
measurement

	glass_container

	Occupancy container
level

	Glass occupancy
container measurement

	paper_container

	Occupancy container
level

	Paper occupancy
container measurement

	plastic_container

	Occupancy container
level

	Plastic occupancy
container measurement

	organic_container

	Occupancy container
level

	Organic occupancy
container measurement

	refuse_container

	Occupancy container
level

	Refuse occupancy
container measurement

	container_volum

	Occupancy container
level

	Generic occupancy
container measurement

	soil_moisture

	Soil moisture

	Soil moisture
measurement

	park_meter

	Parking meter

	Parking meter control

	traffic

	Traffic

	Traffic measurement

	people_flow

	People flow

	Pedestrian flow
measurement

	flowmeter

	Water flow

	Water flow
measurement

	solenoid_valve

	Electrovalve

	Solenoid control

	salinity

	Salinity

	Soil salinity
measurement

	internal_ambient_cond
itions

	Internal
Environmental
Conditions

	Temperature, humidity
and luminosity
measurement

	external_ambient_cond
itions

	External
environmental
conditions

	Temperature, humidity
and luminosity
measurement

	network_analyzer

	Network analyzer

	Electric network
analyzer

	gas_meter

	Gas meter

	Gas consumption meter

	electricity_meter

	Electricity meter

	Electricity
consumption meter

	water_meter

	Water meter

	Water consumption
meter

	soil_sensor

	Soil sensor

	Soil mesurement of
salinity, mosture,
etc

	generic

	Generic component
type

	Default component
type if not specified

	plugsense

	Plug & Sense

	Plug & Sense Libelium
component

Sensor types

The list of sensor types should be configured for each Sentilo instance,
the following list could be used as a reference for any city:

	Id

	Name

	Description

	temperature

	Temperature

	Temperature
measurement

	noise

	Soundmeter Class II

	Sound level measuring
class II.

	noise_class_i

	Soundmeter Class I

	Sound level measuring
class I

	anemometer

	Anemometer

	Wind Speed ​measuring

	humidity

	Humidity

	Humidity measuring

	parking

	Occupation parking

	Occupation parking
control

	luminosity

	Luminosity

	Luminosity measuring

	container_volum

	Occupancy container
level

	Occupancy container
measurement

	container_overturn

	Container overturned

	Container overturned
indicator

	container_open

	Container open

	Container opening
indicator

	status

	Sensor status

	Status control

	battery

	Battery level

	Battery level
measurement

	soil_moisture_15

	Soil moisture 15 cm.

	Soil moisture
measurement

	soil_moisture_35

	Soil moisture 35 cm.

	Soil moisture
measurement

	park_meter

	Parking meter

	Parking meter control

	vehicle_volume

	Number of vehicles

	Measurement of number
of vehicles

	vehicle_occupation_av
erage

	Average occupancy

	Measurement of
average occupancy in
vehicles

	vehicle_speed

	Speed ​​Vehicle

	Vehicle speed
​​measurement

	air_quality_no2

	NO2

	Nitrogen dioxide
measurement

	air_quality_pm10

	PM10

	Measurement of
suspension particles
PM10

	air_quality_pm25

	PM25

	Measurement of
supsension particles
PM25

	air_quality_o3

	O3

	Ozone measurement

	air_quality_so2

	SO2

	Sulfur dioxide
measurement

	air_quality_co

	CO

	Carbon Monoxide
measurement

	air_quality_co2

	CO2

	Carbon dioxide
measurement

	people_flow

	People flow

	Measurement of
pedestrian flow

	flowmeter

	Water flow

	Water flow
measurement

	solenoid_valve

	Electrovalve

	Solenoid actuator

	eto

	Evotranspiration

	Evotranspiration
measurement

	salinity

	Salinity

	Soil salinity
measurement

	pluviometer

	Pluviometer

	Rain measurement

	rain

	Rain gauge

	Rain indicator (it’s
raining/it’s not
raining)

	wind

	Wind gauge

	Wind indicator (>X
m/s)

	wind_direction_6_m

	Wind direction

	Wind direction at 6
meters

	wind_direction_10_m

	Wind direction

	Wind direction at 10
meters

	voltage

	Voltmetre

	Electrical voltage
measurement.
Units: volts (V)

	current

	Ammeter

	Electrical intensity
measurement.
Units amps (A)

	frequency

	Frequencymeter

	Electrical frequency
measurement.
Units: herzs (Hz)

	active_power

	Active power

	Active power
measurement.
Units: kilowatts (kW)

	reactive_power

	Reactive power

	Reactive power
measurement.
Units: reactive
kilovoltiamperis
(kvar)

	cosphi

	Power factor

	Sensor that relates
the active and
reactive power. No
units

	active_energy

	Active electrical
energy meter

	Measurement of
accumulated active
power.
Units: kWh.

	reactive_energy

	Reactive electrical
energy meter

	Measurement of
accumulated reactive
power.
Units: kvarh.

	gas_volume

	Gas meter

	Measurement of
accumulated gas
consumption.
Units: m3 o Nm3

	water_meter

	Water meter

	Measurement of
accumulated water
consumption.
Units: m3 o l

	global_solar_irradian
ce

	Global solar
irradiance

	Mesurement of solar
irradiance

	leaf_moisture

	Leaf moisture

	Leaf wetness

	oxygen

	Oxygen

	O2

	vertical_level

	Vertical level

	Vertical liquid level
(water)

	bend

	Bend

	Bend

	lpg

	Lpg

	Liquified petroleum
gases (H2, CH4,
ethanol & isobutane)

	crack_detection

	Crack detection

	Crack detection gauge

	solar_radiation

	Solar radiation

	Solar radiation

	voc

	Voc

	Volatile Organic
Compounds

	chloride_ion

	Chloride ion

	Ion Cl-

	temperature

	Temperature

	Soil/Water
temperature

	magnessium_ion

	Magnessium ion

	Ion Mg2+

	distance

	Distance

	Distance (by metalic
pressure or by
pressure)

	conductivity

	Conductivity

	Conductivity

	liquid_leakage_line

	Liquid leakage line

	Water Leakage /
Liquid Detection
(Line)

	crack_propagation

	Crack propagation

	Crack propagation
gauge

	nitrate_ion

	Nitrate ion

	Ion NO3

	hall_effect

	Hall effect

	Hall effect

	vibration

	Vibration

	Vibration (lamina)

	copper_ion

	Copper ion

	Ion Cu2+

	calcium_ion

	Calcium ion

	Ion Ca+

	dendometer

	Dendometer

	Trunk, stem or fruit
diameter

	iodide_ion

	Iodide ion

	Ion I-

	bromide_ion

	Bromide ion

	Ion Br-

	sodium_ion

	Sodium ion

	Ion Na+

	linear_displacement

	Linear displacement

	Linear displacement

	atmospheric_pressure

	Atmospheric pressure

	Atmospheric pressure

	methane

	Methane

	CH4

	pressure

	Pressure

	Pressure/ Weight

	ammonia

	Ammonia

	NH3

	redox_potential

	Redox potential

	Oxidation Reduction
Potential

	proximity_indoor

	Proximity indoor

	Ultrasound (indoor)

	air_pollutant

	Air pollutant

	Air pollutants-I
(NH3, SH2, ethanol
and toluene) and air
pollutants-II (H2,
CH4, CO, ethanol and
isobutane)

	liquid_leakage_point

	Liquid leakage point

	Water Leakage /
Liquid Detection
(Point)

	proximity_outdoor

	Proximity outdoor

	Ultrasound (outdoor
IP67)

	potassium_ion

	Potassium ion

	Ion K+

	o_saturation

	O saturation

	Dissolved Oxygen

	presence

	Presence

	Presence (PIR)

	stretch

	Stretch

	Stretch

	liquid_level

	Liquid level

	Horizontal liquid
level (combustibles
or water)

	load

	Load

	Load

	fluoride_ion

	Fluoride ion

	Ion F-

	ph

	Ph

	pH

	solvent_vapors

	Solvent vapors

	Solvent vapors (H2,
CH4, CO, ethanol and
isobutane)

	accelerometer

	Accelerometer

	Accelerometer

Adding sensors or components to the catalog

Description

This action allows the provider to register one or more sensors /
components in the catalog.

http://<your_api_server.com>/catalog/<provider_id>

	Formats

	json

	Method

	POST

	Permission

	Writing

	Returns

	No output data

Parameters

	Key

	Description

	Optional

	sensor

	Sensor ID to register

	No

	description

	Sensor description

	Yes

	type

	Sensor type

	No

	dataType

	Sensor data types

	Yes

	unit

	Unit of measure

	Yes

	component

	Component identifier
to which the sensor
belongs

	Yes

	componentType

	Component type

	Yes

	componentDesc

	Component description

	Yes

	location

	Location/s of the
component to which
the sensor is

	Yes

	timeZone

	TimeZone used by
sensor observations
when it is different
to UTC

	Yes

	publicAccess

	Visualization check
for the sensor in the
public zone

	Yes

	componentPublicAccess

	Visualization check
for the component in
the public zone

	Yes

	additionalInfo

	Additional params
related to the sensor

	Yes

	componentAdditionalIn
fo

	Additional params
related to the
component

	Yes

	technicalDetails

	Technical params
related to the sensor

	Yes

	componentTechnicalDet
ails

	Technical params
related to the
component

	Yes

Please, note the following observations:

	The state and substate of a sensor cannot be changed via te API, only
from the catalog. The default value for state is ‘online’, default
value for substate is empty.

	The identifier must identify an univocal sensor provider, e.g., 2
sensors of the same provider may not have the same ID.

	The identifier must have only alphanumeric (i.e. letters and
numbers), undescores and hyphens characters, with no embedded spaces.

	The list of sensor’s types are configured in the platform through the
catalog web app. If you need a new one, it must be added using the
administration.

	The possible values ​​for the data type of the sensor is also defined
in the platform configuration. The possible values ​​are: number,
text or boolean. The default value is number.

	If the attribute component is not passed as a parameter, the platform
itself will create a catalog component with the same name as the
sensor (if it does not already exist).

	If the attribute componentType is not reported and the component does
not already exists in the system, the component will be defined as a
generic component type.

	If the location attribute is not reported, the component is defined
as a mobile type (with no fixed location). Otherwise it will be
defined as static and set its location with the coordinates provided.
If the element has several locations they should be informed
separated by comma character.

	If the attribute type and / or componentType values are ​​not
configured in the catalog, the system will return a 400 error
indicating that the parameters received are invalid .

	publicAccess param refers to the sensor’s visibility in the sensor’s
public page. Default value is false.

	componentPublicAccess param refers to the components’s visibility in
the public map. Default value is false.

	additionalInfo param is a <key,value> map that allows to store
additional sensor information not mapped to any specific parameter.
The information of this data map must not follow any internal rule.

	componentAdditionalInfo param is a <key,value> map that allows to
store additional component not mapped to any specific parameter. The
information of this data map must not follow any internal rule.

	technicalDetails parameter is a <key,value> map that allows to store
additional sensor information. The available keys and their possible
values are:

	Description

	Key

	Values

	Producer

	producer

	not restricted

	Model

	model

	not restricted

	Serial number

	serialNumber

	not restricted

	Energy

	energy

	220VAC (electric
network), 12_24_VDC
(PoE), 185_230_V
(lighting network),
AUT_BAT (battery),
SOLAR_BAT (solar
battery)

Response data

This action doesn’t return additional data beyond the HTTP status
code associated with each request to
the platform.

Examples

Adding one sensor

If you want to register a new humidity sensor with RE0025 identifier
associated with the component whose identifier is METEO-1 of rec
provider, the request to do will be the following:

http://<your_api_server.com>/catalog/rec

and in the body message:

{"sensors":[
 {"sensor":"RE0025",
 "description":"sensor 25 of moisture",
 "type":"humidity",
 "dataType":"number",
 "unit":"%",
 "component":"METEO-1",
 "componentType":"meteo",
 "componentDesc":"Test componente",
 "location":"41.39479 2.148768",
 "timeZone":"CET"
 }
]}

This request will register a new sensor with name METEO_HUM-1 in the
system of humidity type . Additionally, this sensor will be associated
with the component METEO-1. If the component does not exist in the
system yet , will be registered with the properties defined in the
request (componentType, componentDesc and location).

Adding several sensors

In case it is necessary to add a serie of sensors, the request will be
very similar to the previous one, modifying the message body:

http://<your_api_server.com>/catalog/rec

in the body message

{"sensors":[
 {"sensor":"tt01_REC013",
 "description":"sensor12",
 "type":"humidity",
 "dataType":"number",
 "unit":"grams",
 "component":"METEO-1",
 "componentType":"meteo",
 "location":"41.39479 2.148768"
 },
 {"sensor":"tt01_REC014",
 "description":"sensor12",
 "type":"humidity",
 "dataType":"number",
 "unit":"grams",
 "component":"METEO-1",
 "componentType":"estaciometeo",
 "location":"41.39479 2.148768"
 }
]}

In this case, instead of registering a single sensor, there will be
added two new sensors associated with the component named METEO-1. If
the component does not yet exist in the system, will be registered with
the properties especified in the request (type and localtzació).

Adding one sensor with additional info

If you want to register a new humidity sensor, as in the first example,
but also need additional information for the sensor and its component,
the request to do is the following:

http://<your_api_server.com>/catalog/rec

and in the body message:

{"sensors":[
 {"sensor":"RE0025",
 "description":"sensor 25 of moisture",
 "type":"humidity",
 "dataType":"number",
 "unit":"%",
 "component":"METEO-1",
 "componentType":"meteo",
 "componentDesc":"Test componente",
 "publicAccess":"true",
 "componentPublicAccess":"true",
 "location":"41.39479 2.148768",
 "additionalInfo":{"accuracy":"4.5%","voltage":"2.1-3.6"},
 "componentAdditionalInfo":{"altitude":"525 m."}
 }
]}

This request will register a new sensor with name METEO_HUM-1 in the
system of humidity type, as in the first example, and stores with the
sensor two new attributes: accuracy and voltage.

Update data of a component / sensor

Description

This action permits to update the catalog information related to
components and/or sensors of a provider.

http://<your_api_server.com>/catalog/<provider_id>

	Format

	json

	Method

	PUT

	Permission

	Writing

	Return

	No output data

Parameters

The structure of the input parameters depends on what we want to modify,
sensor or component data.

The following describes the structure of the input parameters in each
case:

Update components

	Key

	Description

	Optional

	components

	Components list (component) to update

	Yes

Each element component has the following structure:

	Key

	Description

	Optional

	component

	Component ID to update

	No

	componentType

	Component type

	Yes

	componentDesc

	Component description

	Yes

	location

	Component location/s

	Yes

	componentPublicAccess

	Visualization check for the public area

	Yes

	componentAdditionalInfo

	Additional params

	Yes

	componentTechnicalDetails

	Technical params

	Yes

The constraints and validation for the parameters are the same as
described in Adding sensors or components.

Update sensors

	Key

	Description

	Optional

	sensors

	Sensors list (sensor) to update

	Yes

Each sensor element has the following structure:

	Key

	Description

	Optional

	sensor

	Sensor ID to update

	No

	description

	Sensor description

	Yes

	type

	Sensor type

	Yes

	dataType

	Data type of the sensor

	Yes

	unit

	Measurement unit

	Yes

	publicAccess

	Visualization check for the public area

	Yes

	additionalInfo

	Additional params

	Yes

	technicalDetails

	Technical params

	Yes

The constraints and validation for the parameters are the same as
described in Adding sensors or components.

Response data

This action doesn’t return additional data beyond the HTTP status
code.

Examples

Request to update the sensor data

If you want to modify the sensor’s description fot the identifiers
RE0012 and RE0013, from rec provider, the request will be:

http://<your_api_server.com>/catalog/rec

in the body message:

{"sensors":[
 {"sensor":"REC012","description":"sensor 12"},
 {"sensor":"REC013","description":"sensor 13"}
]}

This request will update the description of the sensors RE0012 and
RE0013.

Note: If you need to move a sensor to another component, it should be
done by deleting the sensor and creating it again in the other
component.

Request to update the component data

If we want to update component data of a provider, like update its
location and additional info, the request will be:

http://<your_api_server.com>/catalog/rec

in the message body:

{"components":[
 {"component":"COMP-2","location":"41.4051143 2.1320120","componentAdditionalInfo":{"altitude":"530 m."}}
]}

Retrieve providers / sensors list

Description

This resource returns a list of providers and sensors for which you have
at least read permission. Sensors that are in the offline state won’t be
listed. In addition, the service provides optional filtering by sensor
type, component type and component name.

http://<your_api_server.com>/catalog

	Format

	json

	Method

	GET

	Permission

	Reading

	Return

	List of providers, with their
sensors, on which we has at least
read permission

Parameters

	Key

	Description

	Optional

	type

	Sensor’s type filter

	Yes

	component

	Component name filter

	Yes

	componentType

	Component’s type filter

	Yes

Response data

As mentioned, this action, in addition to the HTTP status
code, returns the list of providers
for wich we have at least read permission.

	Key

	Description

	Optional

	providers

	Providers list
(provider) with at
least read permission

	Not

Each provider will have the following structure:

	Key

	Description

	Optional

	provider

	Provider ID

	No

	permission

	Indicates whether it
readable (R) or write
(W) on the provider

	No

	sensors

	Provider list of
sensors (sensor)

	No

Each list element (sensor) will have the following structure.

	Key

	Description

	Optional

	sensor

	Sensor identifier

	No

	description

	sensor description

	Yes

	dataType

	Data sensor type
(NUMBER, BOOLEAN or
TEXT)

	No

	location

	Location where de
sensor is

	Yes

	type

	Sensor type

	No

	unit

	Unities in the sensor
data coming

	Yes

	timeZone

	Sensor’s timezone

	Yes

	publicAccess

	Visualization check
for the public area

	Yes

	component

	Component is
associated the sensor

	No

	componentType

	Component type

	No

	componentDesc

	Component description

	Yes

	componentPublicAccess

	Visualization check
for the public area

	Yes

	additionalInfo

	Additional params
related to the sensor

	Yes

	technicalDetails

	Technical params
related to the sensor

	Yes

	componentTechnicalDet
ails

	Technical params
related to the
component

	Yes

Examples

Request to retrieve all Providers / Sensors

http://<your_api_server.com>/catalog

in the response we will receive

{
 "providers": [{
 "provider": "A",
 "permission": "WRITE",
 "sensors": [{
 "sensor": "MAR_01_00_SN001_1010",
 "description": "Sound Sensor MODI 001",
 "dataType": "NUMBER",
 "type": "noise",
 "unit": "dBa",
 "component": "MAR_01_00_SN001_1010",
 "componentType": "generic",
 "timeZone": "CET"
 }]
 }, {
 "provider": "C",
 "permission": "READ",
 "sensors": [{
 "sensor": "MAR_02_20_PM001_1010",
 "description": "PM10 Sensor IMI 001",
 "dataType": "NUMBER",
 "type": "air_quality_pm10",
 "unit": "ug/m3",
 "component": "air_quality",
 "componentType": "generic"
 }, {
 "sensor": "MAR_02_20_PM001_1012",
 "description": "PM10 Sensor IMI 002",
 "dataType": "NUMBER",
 "type": "air_quality_pm10",
 "unit": "ug/m3",
 "component": "air_quality",
 "componentType": "generic",
 "additionalInfo": {
 "supportMail": "support@imi.com"
 },
 "technicalDetails": {
 "producer": "xxxx",
 "model": "x-1",
 "serialNumber": "9999",
 "energy": "220VAC"
 },
 "componentTechnicalDetails": {
 "producer": "XXXX",
 "model": "X-1",
 "serialNumber": "9999",
 "macAddress": "00:17:4F:08:5F:61",
 "energy": "12_24_VDC",
 "connectivity": "WIFI"
 }
 }]
 }]
}

Request to recover all the sensors in the catalog filtered by type

The request in this case is very similar to the previous one adding the
type parameter:

http://<your_api_server.com>/catalog?type=air_quality_pm10

In this case as a response we will receive:

{"providers":[
 {
 "provider":"C","permission":"READ",
 "sensors":
 [{
 "sensor":"MAR_02_20_PM001_1010",
 "description":"PM10 Sensor IMI 001",
 "dataType":"NUMBER",
 "type":"air_quality_pm10",
 "unit":"ug/m3",
 "component":"air_quality",
 "componentType":"generic"
 },{
 "sensor":"MAR_02_20_PM001_1012",
 "description":"PM10 Sensor IMI 002",
 "dataType":"NUMBER",
 "type":"air_quality_pm10",
 "unit":"ug/m3",
 "component":"air_quality",
 "componentType":"generic",
 "additionalInfo":{"field1":"value1","field2":"value2"}
 }
]
 }
]}

Other examples

http://<your_api_server.com>/catalog?component=comp_demo&type=air_quality_pm10

http://<your_api_server.com>/catalog?componentType=air_quality&type=air_quality_pm10

Delete components / sensors

Description

This action allows the provider to delete catalog components and/or
sensors.

WARNING: this operation performs a cascade delete and the execution of
this action cannot be undone.

http://<your_api_server.com>/catalog/<provider_id>?<parameter>=<value>

	Format

	json

	Method

	DELETE, PUT

	Permission

	Writing

	Return

	No output data

Note that his action can be invoked using two HTTP methods: PUT and
DELETE.

	DELETE we be used to delete all the sensors and components of a
provider. It cannot contain body content.

	PUT will be used to delete a group of sensors or components. We
should add a the parameter method with delete value to the request.
In this case, the sensors or components to delete should be specified
in the body message.

Parameters

The structure of the input parameters depends on whether you want to
delete components or sensors.

The following describes the structure of the input in each case:

Delete components

	Key

	Description

	Optional

	components

	Array of component identifiers to delete

	Yes

Each element of the list corresponds to an identifier of a component to
delete.

Delete sensors

	Key

	Description

	Optional

	sensors

	Array of sensor identifiers to delete

	Yes

Each element of the list corresponds to an identifier of a sensor to
delete.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to delete all components and sensors of a provider

To delete all components and sensors belonging to the provider named rec
the request to do is the following:

DELETE http://<your_api_server.com>/catalog/rec

This request will delete in the catalog all the components and sensors
of the rec provider

Request to delete a set of components of the catalog

To delete a set of components belonging to the provider rec the request
to do is the following:

PUT http://<your_api_server.com>/catalog/rec?method=delete

in the body message:

{"components":["COMP-3","COMP-4"]}

Request to delete a set of sensors of the catalog

To delete a set of sensors belonging to the provider rec the request to
do is the following:

PUT http://<your_api_server.com>/catalog/rec?method=delete

in the body message:

{"sensors":["RE001","RE002","RE003"]}

Data

Description

The data service allows to read, write or delete the observations of the
registered sensors.

All requests for this service will have the following format:

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

where <provider_id> and <sensor_id> correspond to the sensor and
provider identifiers on which we want to perform the requested action.

Actions

The available actions for this service are:

	Publish observations of a sensor

	Publish observations from sensors of a
provider

	Delete observations

	Read observations from a sensor

	Read observations from sensors of a
provider

Publish observations from a sensor

Description

This action allows a provider to publish the observations made by one of
its sensors.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

	Formats

	json

	Method

	PUT

	Permission

	Writing

	Retorna

	No output data

Parameters

	Key

	Description

	Optional

	observations

	Observations list to
publish.

	No

	location

	Geolocation
coordinates in which
the sensor got the
observations(latitude
longitude format).

	Yes

Each observation will have the following structure:

	Key

	Description

	Optional

	value

	Observation value to
register

	No

	timestamp

	Date and time when
the observation was
made (format
dd/MM/yyyyTHH:mm:ssZ)

	Yes

	location

	Geolocation
coordinates, in
decimal degrees, in
which the sensor got
the
observations(latitude
longitude format)

	Yes

Please note the following:

	If you send an observation of a sensor without specifying timestamp,
the platform will use the current timestamp as measurement time.

	The location of the observations is optional. But in case you want to
set it, you can do it for all observations and/or individually for
each one. The location informed for each observation takes precedence
over the global localization.

	The TimeZone (Z) in the timestamps is optional. Its default value is
UTC.

	In previous releases (up to 1.5.x) the system permitted publication
of sensors that weren’t registered in the catalog. Since 1.6, the
sensor has to be correctly registered.

	If the sensor is in offline state, the server rejects the
publication.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to publish the last observation of a sensor

To publish an observation of a sensor service provides two ways to do
it.

Abbreviated request

If we want to publish the last observation for the sensor with RE0012
identifier belonging to the provider with rec identifier we just have to
add the value to the URL. In this case we can not send timestamp nor
location:

http://<your_api_server.com>/data/rec/RE0012/12.3

where 12.3 is the observation value.

As indicated previously, this request will register a new observation
(value 12.3) for the specified sensor. The timestamp of the observation
will be the instant of arrival of the request to the platform.

Normal Request

If you wish to send the timestamp and the location of the observation
too, we should use the format described, and send information in the
body of the request.

For example, if in we want to include the timestamp of the observation,
the request to do will be the following:

http://<your_api_server.com>/data/rec/RE0012

in the body message

{"observations":[{
 "value":"12.3",
 "timestamp":"17/09/2012T12:34:45"}
]}

This request will register a new observation(value 12.3) with the
received timestamp (UTC time zone in this case) of the measurement.

Another example: it shows how to publish the temperature measured on
Barcelona at a given time, sending the time in the Barceloca local time
zone (CET):

{"observations":[{
 "value":"9.6",
 "timestamp":"17/02/2016T11:43:45CET",
 "location": "41.3888 2.15899"}
]}

Request to publish several observations of the same sensor

If you want to send more of an observation of a sensor, the request is
very similar to the previous one, only changing the message body.

http://<your_api_server.com>/data/rec/RE0012

in the body message

{"observations":[{
 "value":"10.1"
 },{
 "value":"11.2",
 "timestamp":"17/09/2012T12:34:45"
 },{
 "value":"12.3",
 "timestamp":"17/09/2012T10:34:45"
 }
]}

In this case are three observations with the corresponding timestamps.

Publishing observations from different sensors

Description

This action allows a provider to publish details of the observations
made ​​by more than one sensor in a single message.

http://<your_api_server.com>/data/<provider_id>

	Format

	json

	Method

	PUT

	Permission

	Writing

	Return

	No output data

Parameters

	Key

	Description

	Optional

	sensors

	List of sensors
(sensor) for which we
publish at least one
observation

	No

Each sensor will have the following structure:

	Key

	Description

	Optional

	sensor

	Sensor identifier

	No

	observations

	Observations list
(observation) to
publish

	No

	location

	Geolocation
coordinates in which
the sensor
observations are
obtained (latitude
longitude format)

	Yes

Each observation will have the structure described on page Publish
observations of a sensor:

	Key

	Description

	Optional

	value

	Observation value

	No

	timestamp

	Date and time at
which the observation
was made
(dd/MM/yyyyTHH:mm:ssZ
format)

	Yes

	location

	Geolocation
coordinates in which
the sensor has
achieved this
observation (latitude
longitude format).

	Yes

Response Data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to send multiple observations of several sensors setting a LTC TimeZone

If we want to send the observations of a set of sensors for the provider
named rec, setting timeZone to CET, the request to do is:

http://<your_api_server.com>/data/rec

and in the body message:

{"sensors":[
 {
 "sensor":"RE0012",
 "observations":[
 {"value":"1.1"},
 {"value":"1.2",
 "timestamp":"17/09/2012T12:34:45CET"},
 {"value":"1.3",
 "timestamp":"17/09/2012T10:34:45CET"}
]
 },{
 "sensor":"RE0013",
 "location":"41.12345 2.12354",
 "observations":[
 {"value":"2.1"},
 {"value":"2.2",
 "timestamp":"16/09/2012T15:43:21CET"},
 {"value":"2.3",
 "timestamp":"16/09/2012T10:43:21CET"}
]
 }
]}

Delete Observations

Description

This action allows to delete observations made by one or several sensors
of a provider.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>

	Formats

	json

	Method

	DELETE

	Permission

	Writing

	Returns

	No output data

Parameters

No additional data is sent.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to delete the last observation of a sensor

If we want delete the last observation received by the plataform of the
sensor with id REC1102 of the provider named rec, the request to do is:

http://<your_api_server.com>/data/rec/RE0012

Request to delete the last observations of a provider´s sensors

If we want to delete the last observation of each sensor ot the provider
named rec, the request to do is:

http://<your_api_server.com>/data/rec

Retrieve sensor observations

Description

This action allows you to retrieve the latest observations of a sensor.
In addition, the service can also permits to specify search criteria to
retrieve observations: filter by a given time period and / or to
indicate the maximum number of observations to be retrieved.

http://<your_api_server.com>/data/<provider_id>/<sensor_id>?<parameter>=<value>

	Format

	json

	Method

	GET

	Permission

	Reading

	Returns

	Observations list

Parameters

	Key

	Description

	Optional

	from

	Indicates the
beginning of the time
period for which you
want to retrieve
observations

	Yes

	to

	Indicates the end of
the time period for
which you want to
retrieve observations

	Yes

	limit

	Indicates the number
of observations to
retrieve

	Yes

Please, note the following:

	The maximum number of records returned will be fixed by the platform
settings. If the parameter passed is higher, the number of records
returned will be equals to the maximum value configured in the
platform.

	If the limit parameter is not set, only one observation will be
returned.

	All dates must have the following format: dd/MM/yyyyTHH:mm:ssZ with Z
as optional (and with default value UTC)

Response data

As mentioned, in addition to HTTP status
code, the observation data is
returned in the body contents as a list of observations:

	Key

	Description

	Optional

	observations

	List the observations (observation)

	No

Each observation has the following structure:

	Key

	Description

	Optional

	value

	Observation value

	No

	timestamp

	The time when the
observation was made
based on UTC
(dd/MM/yyyyTHH:mm:ss
format)

	No

	time

	The time when the
observation was made
in milliseconds

	No

	location

	Geolocation
coordinates in which
the sensor was
recorded observation

	Yes

Examples

Request to retrieve the latest observations of a sensor based on a date

The following request shows an example in which a call is made to
retrieve the last 20 observations of the sensor with RE0012 identifier
of the provider named rec which have been registered from 10/01/2013.

http://<your_api_server.com>/data/rec/RE0012?limit=20&from=10/01/2013T10:00:00

As response we receive:

{"observations":[
 {
 "value":"28.61132406103821",
 "timestamp":"13/11/2017T09:00:00",
 "time":1510563600000

 },{
 "value":"20.795568440010314",
 "timestamp":"13/11/2017T08:30:00",
 "time":1510561800000
 },{
 "value":"91.01094902496055",
 "timestamp":"13/11/2017T08:30:00",
 "time":1510561800000
 },{
 "value":"62.22915604583776",
 "timestamp":"11/01/2013T08:16:38",
 "time":1510561800000
 },{
 "value":"99.96065618303348",
 "timestamp":"11/01/2013T07:16:38",
 "time":1510561800000
 },{
 "value":"94.95685904585568",
 "timestamp":"11/01/2013T06:16:38",
 "time":1510561800000
 },{
 "value":"51.26506022800391",
 "timestamp":"11/01/2013T05:16:38",
 "time":1510561800000
 },{
 "value":"21.43303677241535",
 "timestamp":"11/01/2013T04:16:38",
 "time":1510561800000
 },{
 "value":"55.6601921120059",
 "timestamp":"11/01/2013T03:16:38",
 "time":1510561800000
 },{
 "value":"56.692086830598996",
 "timestamp":"11/01/2013T02:16:38",
 "time":1510561800000
 }
]}

Request to retrieve the last observation of a sensor

If you only want to retrieve the last observation of the RE0012 sensor,
the request to do is:

http://<your_api_server.com>/data/rec/RE0012

As response we will receive:

{"observations":[{
 "value":"11.5",
 "timestamp":"18/09/2012T17:20:00",
 "time":1510561800000}
]}

Read observations from provider’s sensors

Description

This action allows to retrieve the latest observations of the sensors of
a provider. In addition, the service can also specify search criterias
to retrieve observations: filter by a given time period and / or to
indicate the maximum number of observations to be recovered.

http://<your_api_server.com>/data/<provider_id>?<parameter>=<value>

	Format

	json

	Method

	GET

	Permission

	Reading

	Return

	List with the observations from provider’s sensors

Because the number of sensors from a supplier can be very high, and
therefore the amount of information returned can be very large, be
careful using this operations due to performance reasons.

Parameteres

	Key

	Description

	Optional

	from

	Indicates the
beginning of the time
period for which you
want to retrieve the
observations.

	Yes

	to

	Indicates the end of
the time period for
which you want to
retrieve the
observations.

	Yes

	limit

	Specifies the maximum
number of
observations for each
sensor to recover.

	Yes

Please note the following:

	The maximum number of records returned will be fixed by the platform
settings. If the parameter passed is higher, the number of records
returned will be equalsa to the maximum value configured in the
platform.

	If the limit parameter is not set, only one record will be returned.

	All dates must have the following format: dd/MM/yyyyTHH:mm:ss

Response data

In addition to the HTTP status
code, the observation data is
returned in the body contents as a list of observations:

	Key

	Description

	Optional

	sensor

	List of sensors
(sensor) for the
observations that
have been retrieved

	No

Each sensor has the following structure:

	Key

	Description

	Optional

	sensor

	Sensor identifier

	No

	observations

	List of the latest sensor observations

	No

Finally, each observation (observation) has the following structure:

	Key

	Description

	Opional

	value

	Observation value

	No

	timestamp

	The time at which the
observation was made
(dd/MM/yyyyTHH:mm:ss
format)

	No

	time

	The time when the
observation was made
in milliseconds

	No

	location

	Geolocation
coordinates in which
the sensor was
recorded observation

	Yes

Examples

Request to retrieve the latest observations from a provider after a given date

If we want to retrieve the latest observations of the sensors associated
with the provider named rec from a given date we should make the
following request:

http://<your_api_server.com>/data/rec?from=10/09/2012T10:00:00

As response we will receive:

{"sensors":[
 {
 "sensor":"RE0012",
 "observations":
 [{
 "value":"1",
 "timestamp":"10/09/2012T10:05:00",
 "time":1510561800000
 },{
 "value":"1.2",
 "timestamp":"10/09/2012T07:05:00",
 "time":1510561800000
 }]
 },{
 "sensor":"RE0013",
 "observations":
 [{
 "value":"24",
 "timestamp":"10/09/2012T10:06:10",
 "time":1510561800000
 }]
 }
]}

Request to retrieve the latest observations from rec provider

If you only want to retrieve the last observation of the RE0012 sensor,
the request to do is:

http://<your_api_server.com>/data/rec

As response we will receive:

{"sensors":[
 {
 "sensor":"RE0012",
 "observations":
 [{
 "value":"1",
 "timestamp":"10/09/2012T10:05:00",
 "time":1510561800000
 }]
 },{
 "sensor":"RE0013",
 "observations":
 [{
 "value":"24",
 "timestamp":"10/09/2012T10:06:10",
 "time":1510561800000
 }]
 }
]}

Order

Description

The order service allows to send or retrieve orders to
sensors/actuators.

All requests for this service will have the following format:

http://<your_api_server.com>/order/<provider_id>/<sensor_id>

The sensor identifier, <sensorId>, is optional and should be informed
depending on the action we want to execute.

Actions

The available actions for this service are:

	Publish orders

	Retrieve orders

Publish an order

Description

This operation allows to send an order to single sensor or to all
sensors of a provider. Once the system receives the order, it sends a
notification to all its subscribers.

http://<your_api_server.com>/order/<provider_id>/<sensor_id>

	Format

	json

	Method

	PUT

	Permission

	Writing

	Return

	No output data

Parameters

Each order will have its specific structure with its associated
information in the defined format (JSON).

The platform will only transfer the information to the subscribers,
without checking its contents nor reading into it.

	Key

	Description

	Optional

	order

	Orden content

	Not

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Publish an order to a sensor/actuator

The following example shows how to send a request to the platform to
publish a new order destined to the sensor with RE0012 identifier
belonging to the provider with ID rec:

http://<your_api_server.com>/order/rec/RE0012

in the body message:

{"order":"Stop"}

Publish an order to all the provider’s sensors/actuators

The following example shows how to send a request to the platform to
publish a new order to all the sensors belonging to the provider with
rec identifier:

http://<your_api_server.com>/order/rec

in the body message

{"order":"Start RE0012, RE0013"}

Retrieve orders

Description

This action allows you to retrieve the last orders associated with a
sensor or provider. In addition,we can also specify search criteria to
retrieve the orders: filter by a given time period and/or indicate the
maximum number of orders that you want to retrieve.

http://<your_api_server.com>/order/<provider_id>/<sensor_id>?<parameter>=<value>

	Format

	json

	Method

	GET

	Permission

	Read

	Retorns

	List of orders destined to sensor or provider listed

Parameters

	Key

	Description

	Optional

	from

	Indicates the
beginning of the time
period for which you
want to retrieve
orders.

	Yes

	to

	Indicates the ending
of the time period
for which you want to
retrieve orders.

	Yes

	limit

	Specifies the maximum
number of orders to
retrieve.

	Yes

Please, note the following:

	The maximum number of records returned will be fixed by the platform
settings. If the parameter passed is higher, the number of records
returned will be the configured in the platform.

	If the limit parameter is not set, only one record will be returned.

	All dates must have the following format: dd/MM/yyyyTHH:mm:ss

Response data

As mentioned, in addition to HTTP status
code, the requested data is returned
in the body contents as a list of orders.

The response structure depends on what we are retrieving, orders from
a sensor or a provider.

Last orders for a sensor

	Key

	Description

	Optional

	orders

	List with the last sensor’s order

	No

Each order will have the following structure:

	Key

	Description

	Optional

	order

	Order message
recorded at the time
the order was
published

	No

	timestamp

	The time when the
order was made
(dd/MM/yyyyTHH:mm:ss
format)

	No

	sender

	Entity identifier
that issued the
order.

	No

	time

	The time when the
observation was made
in milliseconds

	No

Last orders for provider

	Key

	Description

	Optional

	sensors

	List with sensors (sensor)

	No

Each (sensor) will have the following structure:

	Key

	Description

	Optional

	sensor

	Sensor identifier

	No

	orders

	List with the last orders for the sensor

	No

Finally, each command (order) will have the structure that we have
defined previously.

	Key

	Description

	Optional

	order

	Order message
recorded at the time
the order was
published

	No

	timestamp

	The time when the
order was made
(dd/MM/yyyyTHH:mm:ss
format)

	No

	sender

	Entity identifier
that issued the
order.

	No

Examples

Retrieve the last order for a sensor

To retrieve the last order for the sensor with RE0012 identifier
belonging to the provider named rec, we do the following request:

http://<your_api_server.com>/order/rec/RE0012

As response we will get:

{"orders":[{
 "order":"Shutdown",
 "timestamp":"21/03/2013T14:25:39",
 "sender":"app_demo_provider"}]
}

Retrieve the last N orders for a sensor

If we want to retreive more than one order, we can specify the number of
records to retrieve with the following request:

http://<your_api_server.com>/order/rec/RE0012?limit=3

As response we will get:

{"orders":
 [{
 "order":"Shutdown",
 "timestamp":"21/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 },{
 "order":"Start",
 "timestamp":"20/03/2013T23:59:59",
 "sender":"app_demo_provider",
 "time":1510570798597
 },{
 "order":"Shutdown",
 "timestamp":"20/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 }
]}

Retrieve the last N orders for a sensor between dates

If we want to retrieve orders for a sensor between two dates, we should
do the following request:

http://<your_api_server.com>/order/rec/RE0012?limit=3&from=19/03/2013T00:00:00&to=20/03/2013T23:59:59

As response we will get:

{"orders":
 [{
 "order":"Start",
 "timestamp":"20/03/2013T23:59:59",
 "sender":"app_demo_provider",
 "time":1510570798597
 },{
 "order":"Shutdown",
 "timestamp":"20/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 }
]}

Retrieve the last orders for a provider

All the previous examples are focused on recovering the last command of
a sensor, but the service also allows you to search the latest orders
destined for all the sensors of provider.

In this case, we only specify the provider, and the request will be:

http://<your_api_server.com>/order/rec2

As response we get a list of sensor elements, and each one will contain
its last orders.

{"sensors":
 [{
 "sensor":"RE0012",
 "orders":
 [{
 "order":"Shutdown",
 "timestamp":"21/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 }]
 },{
 "sensor":"RE0013",
 "orders":
 [{
 "order":"Shutdown",
 "timestamp":"21/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 }]
 },{
 "sensor":"RE0014",
 "orders":
 [{
 "order":"Shutdown",
 "timestamp":"21/03/2013T14:25:39",
 "sender":"app_demo_provider",
 "time":1510570798597
 }]
 }]
}

Subscription

Description

The subscription service allows to the platform
clients(application/modules or provider/sensors) to subscribe to system
events, which can be:

	Data: related to data observations received by the platform

	Order: related to orders received by the platform

	Alarm: related to alarms received by the platform

It is also possible to retrieve the list of active subscriptions or
cancel them.

All requests for this service will have the following format:

http://<your_api_server.com>/subscribe/<event_type>/<resource_id>

where <resource_id> identifies the system resource to which the request applies
(providers, sensors or alerts).

Actions

The available actions for this service are:

	Subscription to sensor data

	Subscription to orders

	Subscription to alerts

	Retrieve active subscriptions

	Cancel subscription

Notifications

As mentioned before, when we subscribe to a system event, the platform
will send us a notification (push process), whenever the event occurs,
through a HTTP POST request to the URL configured with the subscription.

The notification message follows the following structure:

{
 "message":"...",
 "timestamp":"...",
 "topic":"...",
 "type":"...",
 "sensor":"...",
 "provider":"...",
 "location":"...",
 "alert":"...",
 "alertType":"...",
 "time":"...",
 "tenant":"..."
 "publisher":"...",
 "publisherTenant":"...",
 "publishedAt":"..."
}

where the following fields are mandatory:

	message: contains the event information (observation, alarm or order)

	timestamp: contains the timestamp associated with the event,
formatted as UTC (dd/MM/yyyy’T’HH:mm:ss).

	topic: identifies the subscription related to the event.

	type: identifies the event type (DATA, ORDER or ALARM)

	time: same as timestamp but expressed as milliseconds

and the following are optional and depend on the event type:

	sensor: contains the sensor identifier related to the event.

	provider: contains the provider identifier related to the event.

	location: only added in observation notifications when the location
is filled in.

	sender: this field has been removed in version 1.6. See publisher
field.

	alert: only added in alarm notifications. Contains the alert
identifier related to the alarm.

	alertType: only added in alarm notifications. Contains the alert
type: INTERNAL or EXTERNAL.

	retryAttempt: if the delivery of the message fails, this number
indicates a number of the retries. See for example how to define
retries in data
subscription.

	publisher: identifies the entity who has published the event.

	publishedAt: this field differs from time field in that it always
stores the time when the event was published on Sentilo.

	tenant: only added in multitenant instances. This field identifies
the tenant to which the event belongs.

	publisherTenant: only added in multitenant instances. This field
identifies the tenant to which the publisher belongs.

Here are three different examples of notification:

{
 "message":"8",
 "timestamp":"26/10/2016T08:50:33",
 "topic":"/data/app_demo_provider/appdemo_sensor_test",
 "type":"DATA",
 "provider":"app_demo_provider",
 "sensor":"appdemo_sensor_test",
 "retryAttempt": 1,
 "publisher":"app_demo_provider",
 "time":1477471833000,
 "publishedAt":1477471833000
}

{
 "message":"Stop",
 "timestamp":"16/10/2013T15:39:11",
 "topic":"/order/app_demo_provider",
 "type":"ORDER",
 "provider":"app_demo_provider",
 "publisher":"app_demo_provider",
 "time":1477471833000,
 "publishedAt":1477471833000
}

{
 "message":"Value greater than 34",
 "timestamp":"16/10/2013T15:40:57",
 "topic":"/alarm/internalAlarmProve",
 "type":"ALARM",
 "sensor":"app_demo",
 "alert":"ALERT_GT14",
 "alertType":"INTERNAL",
 "publisher": :"sentilo"
 "time":1477471833000,
 "publishedAt":1477471833000
}

If the subscription has included a secret key, the following messages
will include the security headers (see
more).

Notifications to untrusted HTTPS

In case that remote endpoint uses a self-signed certificate, add the
following configuration in the config.properties of the
sentilo-platform-server:

#Allows Sentilo to send notifications to untrusted servers, i.e., servers with self signed certificates or signed by unknown CAs
api.subs.ssl.no-validate-certificates=false

Subscription to sensor data

Description

This action allows to subscribe to observation data associated to
sensors.

It’s important to note that we only can subscribe to the sensor data
over we own read permission.

http://<your_api_server.com>/subscribe/data/<provider_id>/<sensor_id>

	Format

	json

	Method

	PUT

	Permission

	Read

	Returns

	No additional data returned

Parameters

	Key

	Description

	Optional

	endpoint

	URL where the
platform will send a
HTTP request with the
observation data

	No

	secretCallbackKey

	Secret key for
callbacks

	Yes

	retries

	Maximum number of
retries

	Yes

	retries_delay

	Delay parameter in
minutes. Delays are
spaced exponentially
according to
following equation:
delay (N) = delay *
2^(N-1)
Where N is the
current entry turn.
More detailed
explanation follows.

	Yes

Retries

In case the remote endpoint is down or does not respond with an success
HTTP 2xx code, Sentilo can try to resend the data later. In order to
overcome major number of remote outages, Sentilo sends the data in delay
times that are exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10
minutes, first retry would occur at 10 minutes, the second 20 minutes
after the first, the third 40 minutes after the second, etc up to the
fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310
minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to subscribe to a sensor’s data

If we want to susbcribe to the sensor’s data with RE0012 identifier of
the provider named rec, the request will be:

http://<your_api_server.com>/subscribe/data/rec/RE0012

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>/resource"}

Request to subscribe to provider’s data

If we want to subscribe to all the sensors belonging to a provider, the
request will be:

http://<your_api_server.com>/subscribe/data/rec

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Subscription to orders

Description

This action allows to subscribe to orders associated to sensors.

It’s important to note that we only can subscribe to the sensor data
over we own read permission.

http://<your_api_server.com>/subscribe/order/<provider_id>/<sensor_id>

	Formats

	json

	Method

	PUT

	Permission

	Read

	Returns

	No additional data returned

Parameters

	Key

	Description

	Optional

	endpoint

	URL where the
platform will send a
HTTP request with the
order data

	No

	secretCallbackKey

	Secret key for
callbacks

	Yes

	retries

	Maximum number of
retries

	Yes

	retries_delay

	Delay parameter in
minutes. Delays are
spaced exponentially
according to
following equation:
delay (N) = delay *
2^(N-1)
Where N is the
current entry turn.
More detailed
explanation follows.

	Yes

Retries

In case the remote endpoint is down or does not respond with an success
HTTP 2xx code, Sentilo can try to resend the data later. In order to
overcome major number of remote outages, Sentilo sends the data in delay
times that are exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10
minutes, first retry would occur at 10 minutes, the second 20 minutes
after the first, the third 40 minutes after the second, etc up to the
fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310
minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to subscribe to orders for a sensor

If we want to susbcribe to the orders for the sensor with RE0012
identifer of the provider named rec, the request will be:

http://<your_api_server.com>/subscribe/order/rec/RE0012

and the body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Request to subscribe to orders for a provider

If we want to subscribe to all the sensor’s orders belonging to the rec
provider, the request will be:

http://<your_api_server.com>/subscribe/order/rec

and like body message:

{"endpoint":"http://<your_endpoint_notification_server.com>"}

Subscription to alerts

Description

This action allows to subscribe to alarms associated to sensors.

It’s important to note that we only can subscribe to the sensor data
over we own read permission.

http://<your_api_server.com>/subscribe/alarm/<alert_id>

	Format

	json

	Method

	PUT

	Permission

	Read

	Returns

	No additional data returned

Parameters

	Key

	Description

	Optional

	endpoint

	URL where the
platform will send a
HTTP request with the
alarm message

	No

	secretCallbackKey

	Secret key for
callbacks

	Yes

	retries

	Maximum number of
retries

	Yes

	retries_delay

	Delay parameter in
minutes. Delays are
spaced exponentially
according to
following equation:
delay (N) = delay *
2^(N-1)
Where N is the
current entry turn.
More detailed
explanation follows.

	Yes

Retries

In case the remote endpoint is down or does not respond with an success
HTTP 2xx code, Sentilo can try to resend the data later. In order to
overcome major number of remote outages, Sentilo sends the data in delay
times that are exponential according to equation:

delay (N) = delay * 2^(N-1)

For example, if we have a subscription configured with 5 retries and 10
minutes, first retry would occur at 10 minutes, the second 20 minutes
after the first, the third 40 minutes after the second, etc up to the
fifth retry.

The total time used for the 5 retries would occur in 10+20+40+80+160=310
minutes after the first failed intent.

Response data

This action does not return additional data beyond the HTTP status
code.

Examples

Request to subscribe to alert’s alarms

If we want to register a new subscription for alarms belonging to the
alert with alert1 identifier, the request will be:

http://<your_api_server.com>/subscribe/alarm/alert1

and the body message:

{"endpoint":"<your_endpoint_notification_server.com>"}

Retrieve active subscriptions

Description

This action allows to retrieve the list of all our active subcriptions.
Additionally, we can retrieve only subscriptions from a specific type.

http://<your_api_server.com>/subscribe/<event_type>

	Format

	json

	Method

	GET

	Permission

	Read

	Returns

	Active subscriptions

<event_type> is optional and allows to filter the subscription by type.

Parameters

No additional parameters can be used.

Response data

This action, additionally to the HTTP status
code, will return a list of our
active subscriptions:

	Key

	Description

	Optional

	subscriptions

	List with all our active subscriptions

	No

Each subscription element contains this set of attributes:

	Key

	Description

	Optional

	endpoint

	URL defined in the
subscription

	No

	type

	Event type related to
the
subscription(data,
order o alarm)

	No

	provider

	In case the type is
data or order
this attribute
contains the provider
identifier

	Yes

	sensor

	In case the type is
data or order
this attribute
contains the sensor
identifier

	Yes

	alarm

	In case the type is
alarm this
attribute contains
the alert identifier

	Yes

Examples

Request to retrieve all active subscriptions

http://<your_api_server.com>/subscribe

As response we will obtain:

{
 "subscriptions":
 [{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"ALARM",
 "alert":"alerta1"
 },{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"DATA",
 "provider":"app_demo_provider",
 "sensor":"appdemo_sensor5_test"
 },{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"DATA",
 "provider":"app_demo_provider",
 "sensor":"appdemo_sensor_test"
 },{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"ALARM","alert":"11"
 }]
}

Request to retrieve active subscriptions for a specific type

If we want to retrieve only the subscriptions to a specific event type:

http://<your_api_server.com>/subscribe/alarm

As response we will obtain:

{
 "subscriptions":
 [{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"ALARM",
 "alert":"alert1"
 },{
 "endpoint":"http://<your_endpoint_notification_server.com>",
 "type":"ALARM",
 "alert":"alert11"
 }]
}

Cancel subscriptions

Description

This action allows to cancel any or a set of our active subscriptions.

http://<your_api_server.com>/subscribe/<event_type>/<resource_id>

	Format

	json

	Method

	DELETE

	Permission

	Write

	Returns

	No additional data returned

<event_type> and <resource_id> are optional and allow to filter the subscription to
cancel by event type or related resource.

Parameters

No additional data can be sent.

Response data

This action does not return any additional data beyond the HTTP status
code.

Examples

Request to cancel subscriptions

If we want to cancel all our active subscriptions, the request will be:

http://<your_api_server.com>/subscribe

Request to cancel subscriptions for a specific event type

If we want to cancel all our active subscriptions of a specific event
type like order, the request will be:

http://<your_api_server.com>/subscribe/order

Request to cancel subscriptions for a specific resource

If we want to cancel all our active data subscriptions of a specific
sensor like RE0012 belonging to the rec provider, the request will be:

http://<your_api_server.com>/subscribe/data/rec/RE0012

Architecture

Sentilo platform

Sentilo is a platform aimed to isolate and communicate the applications
that are developed to exploit the information generated from the ground
by the layer of sensors deployed across to collect and broadcast this
information.

Its main modules are:

	Restful API

	Web Application which provides an administration console and some
public visualizers

	Data publication & subscription system

	A memory database for storing real time data

	A non-SQL database for storing less volatile data, like the sensor’s
catalog

	Several agents which extend the platform features

Key Concepts

This section describes the main concepts of Sentilo. Many of these
concepts are discussed later deeply.

You can read also some Technical FAQs.

PubSub Platform

Sentilo allows customers to publish and retrieve information and to
subscribe to system events. This module is a stand-alone Java process
that uses Redis as a publish/subscribe mechanism.

The different types of information considered are:

	observations

	alarms

	orders

Please, check this out fore more
info.

RealTime storage

Primary repository where the platform stores all the information
received. It is configured to do periodic backups in the file system. It
is also the Publish/Subscrive engine.

REST API

The client’s communication with publish/subscription mechanism is made
using the REST API provided by the platform.

Services offered by the API can be classified into five main groups:

	data: provides operations to publish, retrieve, delete data.

	order: provides operations to publish, retrieve, delete orders.

	alarm: provides operations to publish, retrieve, delete alarms.

	subscribe: provides operations to subscribe, retrieve and cancel
subscriptions.

	catalog: provides operations to insert, update, query and delete
catalog resources (sensors, components and alerts).

By default, the information is transmitted using JSON format. Please,
check this out fore more info.

Agents

Agents are Java processes that expand the core functionality of the
platform through a Plug & Play system using the Redis publish and
subscribe mechanism.

Sentilo currently provides several agents:

	Relational database agent: used to export historical data to a
relational database.

	Alert agent: used for processing each data received by the
platform and validate it with the business rules configured in the
catalog.

	Activity Monitor Agent: used for upload the events to
Elasticsearch.

	Historian Agent: used for upload the events to OpenTSDB.

Authentication Token

The invocation of different REST API services is secured using an
authentication token. This token must be sent in every request as a
header parameter of the HTTP request named IDENTITY_KEY. This token is
unique for each provider or client application, and is managed by the
catalog application.

Please, check this out fore more info.

Permission

Permissions allow Sentilo to identify the requester and to ensure that
who makes a request is authorized to do it. Permissions are managed by
the catalog web app and allow to configure read or write permissions to
client application on third party resources (provider or client
applications). By default, every platform entity has read and write
permissions on its own resources.

Please, check this out fore more info.

Notification mechanism

Sentilo provides two mechanisms for nofitying events:

	If the client is capable of having an opened socket, the platform
will send a notification to this socket every time an event is
triggered
(push).

	If the client cannot have an opened socket, then it must be doing
periodic requests (polling)
to the platform to retrieve last events.

Catalog

The Web Application Platform console allows to manage the following
resources: providers, applications, components, sensors, sensors types,
component types, alerts and users.

It also provides a public console for displaying components and sensors
registered in the platform as well as the data that has been received.

Please, check this out fore more info.

Alert

Sentilo allows to manage sensor-level internal alerts, aimed to control
the validity of the data received. The set of conditional operators
available are: >, >=, <, <=, =, any change, variation, frozen. When
the value received from a sensor doesn’t met any of the conditions
defined, the alert agent publishes an event (alarm) notifying it. These
alerts are defined through the console.
There are also external alerts which can be defined and triggered
externally though the
API.

Platform architecture

The following diagram describes the Sentilo platform:

[image: _images/arch1.jpg]

PubSub Server

PubSub Server is a stand-alone java application whose design is divided
into two layers:

[image: _images/arch2.jpg]

	Transport Layer: designed following the Thread Pool pattern:
http://en.wikipedia.org/wiki/Thread_pool_pattern

	Service Layer: Based in Spring and Redis, it’s designed to provide
high performance rates.

Transport Layer

Tthe transport layer is designed following the Thread Pool pattern and
is implemented with Apache HttpCore library.

The following diagram shows the main flow for a request within this
layer:

[image: _images/arch3.jpg]

	The client sends a Http request to the REST platform

	The server accepts and queues it on the list of pending requests

	When a Worker is available, a pending task is assigned to it for
processing (removing it from the queue)

	delegates the request to an element of the service layer

	and constructs the HTTP response from the information received

	Send the response to client’s request

The values ​​of the job queue and the workers’ pool are fully
configurable via properties file, for easily adjust to the load
requirements of each environment:

<bean id="ThreadPool" class="org.sentilo.platform.server.pool.ThreadPool"
 p:initialCapacity="${thread.pool.capacity.initial}"
 p:maxCapacity="${thread.pool.capacity.max}"
 p:shutdownSecondsTimeout="${thread.pool.shutdown.timeout.seconds}"
 p:QUEUESIZE="${thread.pool.queue.size}"
 p:groupId="${thread.pool.group.id}"
 p:groupName="${thread.pool.group.name}" />

thread.pool.queue.size=100
thread.pool.capacity.initial=4
thread.pool.capacity.max=10

Service Layer

The design of this layer has the main premise of minimizing the request
processing time, so all the main job is held in memory(Redis). Redis
stores data in a memory database but also has the posibility of disk
storage to ensure the durability of the data.

The following diagram shows the main flow for a request within this
layer:

[image: _images/arch4.jpg]
NOTE: (*) Executed asynchronously to the main process.

	The Worker delegates the request to the associated handler depending
on the type of request (data, order, alarm, …)

	The following validations are performed on each request:

	(2a) Integrity of credential: checks the received token sent
in the header using the internal database in memory containing all
active credentials in the system.

	(2b) Authorization to carry out the request: validate that the
requested action can be done according to the permission database.

	the validity of the request parameters: mainly, structure and
typology.

	After that:

	stores the data in Redis (in memory)

	and depending on the type of data

	(3a) publish the data through publish mechanism

	(3b) or register of the subscription in the
ListenerMessageContainer

	Redis is responsible for sending the published information to
ListenerMessageContainer event, who is responsible for managing the
subscription in Redis as a client for any type of event. **(*)**

	The container notifies the event to each subscription associated with
it sending a request, via HttpCallback **(*)**

The platform registers a task that runs periodically who is responsible
for credentials & permissions synchronization, stored in memory in
server (A). These data is retrieved from the catalog application. This
will maintain anytime an exact copy of these values ​​in memory and
allows to check credentials and permissions instantly.

Finally, access to Redis is done through a connection pool fully
configurable through properties file, which allows you to adjust to the
specifics of each environment.

<bean id="jedisPoolConfig" class="redis.clients.jedis.JedisPoolConfig"
 p:maxActive="${jedis.config.maxactive}"
 p:maxIdle="${jedis.config.maxidle}"
 p:maxWait="${jedis.config.maxwait}"
 p:testOnBorrow="true"
 p:whenExhaustedAction="1"/>

jedis.config.maxactive=50
jedis.config.maxidle=50
jedis.config.maxwait=50

Comments

	This design allows system scalability both vertically and
horizontally:

	vertically: increasing the boundaries of work queue & workers.

	horizontally: distributing the load across multiple instances or
server nodes.

	It also reduce response time because the process is carried out in
memory.

Catalog application

The catalog application platform is a web application built with Spring
on the server side (Spring MVC, Spring Security, ..) using jQuery and
bootstrap as presentation layer and MongoDB as data storage database.

This webapp consists of:

	a public console for displaying public data of components and sensors
and their data

	a secured part for resources management: providers, client apps,
sensors, components, alerts, permissions, …

It is fully integrated with the Publish/Subscribe platform for data
synchronization:

	permission and authentication data

	register statistical data and the latest data received for showing it
in different graphs of the Web application.

Integrations

Agents

Agents are internal modules oriented to expand its functionality without
having to alter its core. The installation is based on the principle of
Plug & Play: they are recognized by the system and started automatically
to be up and running.

Every agent is a process that acts as a subscriber for the
publish/subcribe platform. These processes will subscribe directly to
Redis as a independent clients. This subscription will provide the input
data to do the underlying business logic (store in a relational
database, process alarms, generate statistics, …)

The following diagram shows the design that every agent should follow:

[image: _images/arch6.jpg]

	When agent is started, it subscribes as client to Redis for the event
that wants to receive notifications.

	When Redis receives a publication of any of these data, the agent is
automatically notified with a new message.

	The message is processed and transferred to the corresponding agent’s
service responsible to carry out the underlying business logic.

As mentioned above, Sentilo currently provides two agents:

Relational database agent

This agent stores all information received from PubSub platform into a
set of relational databases (the number of relational databases is fully
configurable). It could be configured to filter the data to store
according to a business rules through a configuration file.

To do this, when the agent is started it makes a subscription to the
desired information in Redis (observations, orders and/or alarms), that
has previously been defined in a properties file:

//In this example we indicate to persist any data using a DataSource with srDs identifier,
//and also to store any data from provider with PARKING identifier,
//on a different DataSource whose identifier is parkingDs.

//Finally, we can indicate more than one DataSource destination to persist the same data.

data\:PARKING*=parkingDs
data\:*=srDs
order\:*=srDs
alarm\:*=srDs,parkingDs

It is imperative that the DataSources are defined in the context of the
agent with the same identifier:

<bean id="srDs" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 ...
</bean>

<bean id="parkingDs" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 ...
</bean>

This context is defined in the file:

sentilo-agent-relational/src/main/resources/spring/relational-persistence-context.xml

Alarm agent

This agent processes each internal alert defined in the catalog and
publish a notification (a.k.a. alarm) when any of the configured
integrity rules are not met.

Due to the type of available rules, this validation process integrity is
divided into two threads:

	An internal process that runs every minute, evaluates the status of
each sensor that have associated (frozen type) alerts.

	Additionally, each time a Redis notification is received, alerts
associated with the data received are evaluated.

Finally, an internal process regularly synchronize the alert list, to
synchronize the information stored in memory with the catalog
repository.

Activity Monitor agent

Background on Activity Monitor Agent

Sentilo is a publication-subscription platform. The amount of data held
in the system is proportional to Redis deployment and directly depends
on the amount of physical memory available for the Redis server. In
another words, the data has to be probably deleted after a certain
amount of time to free the Redis memory. For example, in the Barcelona
deployment, the data is deleted after approximately one week.

Additionally to data expiration, Sentilo does not provide many
dashboards and those dashboards are not customizable.

In order to fill the gap of historization and dashboards, we use
Elasticsearch [https://www.elastic.co/products/elasticsearch] and
Kibana [https://www.elastic.co/products/kibana]. Elasticsearch is a
powerful Java-based fulltext search database with REST API. It is
frequently used together with it’s modules, Kibana for dashboards and
Logstash for collecting of logs. The combination of Elasticsearch,
Logstash and Kibana is often called the ELK stack. ELK provides a
comfortable way to store and exploit historical information, and also a
near-realtime monitoring of the platform. Note that Elasticsearch
behaves excellently in cluster mode.

Sentilo events are uploaded to Elasticsearch through a Sentilo agent
called Activity Monitor Agent. The configuration of this agent is
described further in this chapter.

The following image illustrates a possible setup of Sentilo with ELK
stack. Logstash is optional and can be used e.g. for monitoring of
Sentilo logs (like login errors, invalid messages etc.), as well as
monitoring of system resources.

[image: _images/sentilo_monitoring_deployment.png]
The setup of the ELK stack is well documented and beyond the scope of
this page.

Configuration

Activity Monitor Agent is configured with a set of .properties files in
sentilo/sentilo-agent-activity-monitor/src/main/resources/properties.

subsription.properties

	Property

	Description

	Comments

	topics-to-index

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration:

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*, /data/PROVIDER2/*

Subsribe only to data of 2 providers

monitor-config.properties

	Property

	Description

	Comments

	elasticsearch.url

	URL of the ES
instance

	

	batch.size

	How many evens are
sent to ES at once.

	Every HTTP request
consumes certain
amount of resources,
thus is convenient to
use a ES bulk API.
The agent won’t send
events to ES until
batch.size events
occurred.

	batch.workers.size

	Number of threads the
agent

	Determines how many
parallel threads
communicate with ES.

	batch.max.retries

	Number of retries
when ES is
unavailable

	Number of intents for
upload to ES
instance.

The agent will create index(es) called sentilo-YYYY-MM.

Configuration of Elasticsearch, Logstash and Kibana is beyond the scope
of this document and can be easily followed on their respective web
pages.

Compatible versions

Sentilo has been successfully used in with these versions of ELK (which
does not mean other versions shouldn’t work as well):

	ELK 5+

Historian agent

Background on Historian Agent

As you already might have learned, Sentilo does not persist data forever
because of limited system resources.

Commonly used setup of a Sentilo instance is to employ one of the agents
to copy the data into some external database or storage.

Since the data volumes can be fairly big and the data are mostly
structured (except when the observations are text), it is convenient to
use a scalable solution for time series such as
OpenTSDB [http://opentsdb.net/].

OpenTSDB installs of top of HBase and HDFS. Exposes a HTTP REST API and
can be used from Grafana [http://grafana.org/] as one of it’s
datasources.

Configuration

Historian Agent is configured with a set of .properties files in
sentilo/sentilo-agent-historian/src/main/resources/properties.

subsription.properties

	Property

	Description

	Comments

	topics-to-index

	Regexp pattern on
event name that
enables
including/excluding
events

	Examples of configuration

/alarm/*,/data/*,/order/*

Subscribes to all events

/data/PROVIDER1/*,/data/PROVIDER2/*

Subsribes only to
data of 2 providers

monitor-config.properties

	Property

	Description

	Comments

	opentsdb.url

	URL of the OpenTSDB
instance

	

	batch.size

	How many evens are
sent to OpenTSDB at
once.

	Every HTTP request
consumes certain
amount of resources,
thus is convenient to
use a OpenTSDB bulk
API. The agent won’t
send events to
OpenTSDB until
batch.size events
occurred.

	batch.workers.size

	Number of threads the
agent

	Determines how many
parallel threads
communicate with
OpenTSDB.

	batch.max.retries

	Number of retries
when OpenTSDB is
unavailable

	Number of intents for
upload to OpenTSDB
instance.

Configuration of HDFS, HBase, OpenTSDB and is beyond the scope of this
document and can be easily followed on their respective web pages.

Compatible versions

Sentilo has been successfully used in with these versions:

	Hadoop 2.7.2

	HBase 1.2.1

	Opentsdb 2.2.0, 2.3.0

	Grafana 3 +

Federation agent

Description

The federation agent is a module that permits to share events between two independent instances of Sentilo.
The sharing is unilateral - one Sentilo instance is emitting events and the other is receiving.
The agent is installed at the side of the receiving instance:

[image: _images/sentilo_federation.png]
The administrator of the emmitting Sentilo instance only needs to create a new application and provide the token the
administrator of the receiving instance.
As with any Sentilo application, the administrator is in control of which provider’s data are readable by the remote federation agent.

Providers, components and sensors are created automatically in the catalog of the receiving instance by the federation agent.
The agent uses its application token to query the emitting catalog API to obtain remote objects, and uses the local catalog
application id to replicate the locally.

The federation agent creates subsriptions on data it has permission. It creates a HTTP endpoint and tells the emitting instance
to forward the events to this endpoint URL.

Configuration

Federation Agent’s configuration is in file
sentilo/sentilo-agent-federation/src/main/resources/properties/application.properties.

	Property

	Default Value

	Description

	server.port

	8082

	Agent’s HTTP port

	rest.client.local.host

	http://127.0.0.1:8081

	Local Sentilo API endpoint

	sentilo.master.application.id

	sentilo-catalog

	Local Sentilo application Id. The agent will use the token of the application to make changes in catalog

	catalog.mongodb.host

	127.0.0.1

	Local MongoDB host

	catalog.mongodb.port

	27017

	Local MongoDB port

	catalog.mongodb.database

	sentilo

	Local MongoDB database name

	catalog.mongodb.user

	sentilo

	Local MongoDB user

	catalog.mongodb.password

	sentilo

	Local MongoDB password

	federation.subscription.endpoint

	http://localhost:8082/data/federated/

	Agent URL that will be used in subscriptions in the remote Sentilo instance.

	federation.subscription.secret.key.callback

	secret-callback-key-change-it

	HMAC secret used for incoming subscription.

	federation.subscription.max.retries

	3

	Number of retries used for subcription

	federation.subscription.max.delay

	5

	Delay used for subcription

Further configuration of the agent is available in the “Federation services” menu.

The menu is available when running Tomcat with the option:

-Dsentilo.federation.enabled=true

The “Client application token” input is the token created in the emitting Sentilo instance:

[image: _images/catalog-federation-config.png]

Kafka agent

Description

The Kafka agent publishes Sentilo events to Kafka.

Configuration

	Property

	Default Value

	Description

	kafka.bootstrap.servers

	localhost:9092

	Comma-separated list of Kafka brokers

	zookeeper.nodes

	localhost:2181

	Comma-separated list of Zookeeper nodes

	batch.workers.size

	10

	Number of worker threads

	batch.max.retries

	1

	How many times will the agent try to resend the message to Kafka until it gives up

	kafka.request.timeout.ms

	30000

	

	kafka.linger.ms

	100

	Milliseconds before the contents of buffer are sent or until batch fills up, whichever comes first.

	kafka.batch.size

	20000

	Number of bytes of internal buffer. If the size fills up before , contents are sent to Kafka, .

Otherwise contents are sent once kafka.linger.ms passed.

	kafka.topicPrefix

	sentilo

	Topics in Kafka will start with following prefix. May be left blank

	kafka.topicSeparator

	.

	The compound name of topic in Kafka will be separated with this string.

	kafka.topicNameMode

	topicPerSensor

	Possible values of topicNameMode for the “data” event type:
* topicPerSensor: sentilo.data.providerName.sensorName
* topicPerProvider: sentilo.data.providerName
* topicPerSensorType: sentilo.data.temperature
* topicPerMessageType: sentilo.data
* singleTopic: sentilo

Compatible versions

Sentilo has been successfully used in with these versions:

	Kafka 0.11.0

Node-red

Node-RED [https://nodered.org] offers a fast integration and
prototyping ecosystem for Sentilo. There’s a Sentilo ad-hoc node in
/sentilo-node-red. In order to activate it to your local Node-RED
installaction procede with two simple steps:

	From the directory /sentilo-node-red, type:

npm link

This command registers the package node-red-contrib-sentilo to the
NodeJS node_modules.

	In order to add the module to your NOdeRED installation, type:

cd ~/.node-red
npm link node-red-contrib-sentilo

Then, following nodes should appear in the nodes palette:

[image: _images/sentilo-nodered.png]
Now, you should be able to use Sentilo from Node-RED:

[image: _images/sentilo-nodered2.png]

Catalog and Maps

Introduction

The Catalog is a web application that enables you to administer, rule
and monitor the Sentilo platform resources and activity. On this page,
you will learn how to manage and administer the Sentilo resources and
how to monitor its activity.

We will begin with the monitoring and then follow with the
administration section.

Sentilo monitoring

The Catalog allows us to display some Sentilo statistics through a set
of features/pages which allow us to inspect the current platform
activity and to display the components/sensors over a map.

Statistics

The statistic dashboard, which is accessible from the top menu bar,
displays some basic use indicators, like total requests processed,
number of sensors registered, current requests per second, max daily
average and max average requests per second, ….. These values are
automatically updated every 30 seconds.

[image: _images/stats_001.jpg]
It also shows a time-series graph which displays the platform activity
(such as observations, orders and alarms) for the last 100 minutes. This
graph is automatically updated every 5 minutes.

[image: _images/stats_002.jpg]

Navigate the last data chart

You can navigate along the dates of the graph by using the buttons
located in the lower right corner of it:

[image: _images/chart_controls.png]

	left arrow: navigate to the past (only if there are older data)

	reload data (center button): reload last data / reset chart data

	right arrow: navigate to the future (only if you have navigated
or gone into the past before)

You could also monitor the current activity of each sensor from the
different viewers available which are accessible from the Explore item
at the top menu bar (Universal viewer and Route viewer).

Universal viewer

Components map

The catalog provides a default map, based on Google Maps, which shows
all the public components registered at the platform. If the user is
logged as administrator, all the private components will be displayed as
well.

[image: _images/universal_viewer_170_001.jpg]
On this page, you can filter the components to show by selecting a
component type from the top left select.

[image: _images/universal_viewer_170_002.jpg]
Depending on the zoom level, the map will display the elements as
individuals POIs or grouped in clusters, showing the number of
components in each group.

[image: _images/universal_viewer_170_003.jpg]

Component details

Sensors list

When you select a component, a popup window is opened above the map and
displays the list of sensors related to it with the last activity for
each one of them (as noted above, the private sensors will be displayed
only for logged users):

[image: _images/universal_viewer_170_004.jpg]

Sensors last activity view

If you click into the content area of the popup window, a new page is
open displaying some basic details about the component, and a
time-series graph with the last activity of each of its sensors:

[image: _images/universal_viewer_170_005.jpg]
Navigate the last data chart

You can navigate along the dates of the graph by using the buttons
located in the lower right corner of it:

[image: _images/chart_controls.png]

	left arrow: navigate to the past (only if there are older data)

	reload data (center button): reload last data / reset chart data

	right arrow: navigate to the future (only if you have navigated
or gone into the past before)

Default configuration

The initial map settings are configured in the file:

sentilo-catalog-web/src/main/webapp/WEB-INF/jsp/common/include_script_maps.jsp

and includes settings such as the default map center, the default zoom,
….

// the initial map center (Barcelona city)
var defaultMapCenter [41.4001221, 2.172839];
var defaultZoomLevel 14;
var defaultInputLocationZoomLevel 17;
// the maximum zoom level beyond which pois are not grouped into clusters
var defaultMaxZoomCluster 13;
// flag for control if routes must be displayed or no on the current map
var showRoutes false;
// the minimum zoom level beyond which routes are displayed
var minRouteZoomLevel 15;
// flag for control if only components that fit into bounds's map must be searched on the server
var filterByBounds true;
...

You could change these configuration parameters or customize the look
and feel to meet your requirements, but instead of overwrite the
existing values you could add the new values to the file:

sentilo-catalog-web/src/main/webapp/WEB-INF/jsp/common/include_script_maps_config.jsp

For example, add the following line to the include_script_maps_config
file if you would change the initial map center to London:

var defaultMapCenter [51.4991257, -0.11325074];

When Catalog starts, properties in this file overwrites existing ones
having the same name in the file include_script_maps.jsp

Displaying complex data

In some cases, you may want to inform complex data as an observation
on Sentilo, such like a large json object. For these cases, Sentilo will
detect that the text is a json object and then it will be shown to you
as a prettyfied json value:

[image: _images/complex_data_170_001.jpg]
You can expand or compress the prettified json with the bottom buttons
under the status field,

Route viewer

As the name suggest, the route viewer is a specific map that shows the
routes followed by the mobile components (keep in mind that only the
last 20 points are displayed for each route):

[image: _images/route_viewer_170_001.jpg]
The same features described previously apply on this map and its markers
(popup window, …), but with the particularity that if you click over a
route point then the popup window displays sensor activity related to
the time instant in which component was at that location.

[image: _images/route_viewer_170_002.jpg]

Administration console

The administration console is composed of several CRUDs used to maintain
all the entities of the Catalog such as providers, components, sensors,
users, … Only registered users can access it, so you must be logged
before starting to manage the Catalog (the login access is located at
the top right menu bar). Remember that, by default, the admin user has
admin/1234 as access credentials.

All admin pages follow the same structure and layout for ease of use and
to facilitate future maintenance. Therefore, below there is only a brief
description of each admin page rather than to repeat the same things
over and over in every section. In these sections will focus only on the
particularities of each one.

When you select any option of the menu admin, the first page that you
will see will be a list with the resources of this type already
registered on the Catalog. These lists are very intuitive and extremely
easy-to-use: you could filter, page and order it. You could delete an
existing resource selecting the corresponding checkbox and clicking the
Delete selected button; you could add new resources selecting the
corresponding button and you could edit anyone clicking over the
corresponding row.

[image: _images/ComponentsTypes.png]
When you select to add a new resource, a traditional form page is
displayed. Here, you must have filled in the mandatory fields before
clicking the Save button. If some mandatory field is not fiiled in or
it have a no valid value, the page shows you information about what is
wrong:

[image: _images/new_provider_2.png]
Otherwise, the resource will be registered into the Catalog and you will
be redirect to the list page (at the top right corner you will see a
confirmation message that the resource have been succesfully created):

[image: _images/ComponentsTypes_create.png]
The same applies when you try to delete a resource, but with the
peculiarity that the browser will always ask for your confirmation
before deleting it:

[image: _images/ComponentsTypes_delete.png]
If the resource has been succesfully removed, the list is reloaded and a
confirmation message is displayed at the top right corner:

[image: _images/ComponentsTypes_deleted.png]
Otherwise, you will see an error page with a description about what is
wrong. For example, if you try to delete a component type that is
associated with an existing component the response will be :

[image: _images/delete_error.png]

Organization

The organization is the entity that describes the Sentilo instance.

Detail

By default, this organization is created and its identifier is
sentilo.

[image: _images/Organitzation_detail.png]
We can also edit the organization’s name other contact details, except the.

Config params

In addition, we can edit the visualization formats and public map
settings, using the Config params tab:

[image: _images/organization_170_001.jpg]
There we can configure the Visual configuration and the Map
configuration.

Visual configuration

These params will apply to the entire catalog application visual
customization, and how the user will see the data. Note that time zone &
date format are directly relationated.

	Property

	Description

	Comments

	Time zone

	Defines the time zone
of the organization,
and modifies the way
to display data on
screen, such as dates

	You can define hourly
difference or time
zone abbreviations:
CET, UTC, +001…

	Date format

	Defines the date
format with which the
data will be
displayed in the
application (lists,
details…)

	Example: dd/MM/yyyy
HH:mm:ss = 30/11/2017
15:34:56
See all possible
formats as Java Date
Format, at: Java
Date Format [https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]

	Chart values number

	Number of
observations
displayed on chart

	It must be a positive
integer number
greater or equals to
10. If blank, it will
be a default value of
10.
This value will be
overwritten by
sensor’s
configuration one.

Map configuration

These params configure the universal map visualization.

	Property

	Description

	Comments

	Zoom level

	Zoom level of the
universal map

	Default value is 14.
And you can define a
value between 1 and
20.
See possible values
in:
https://developers.go
ogle.com/maps/documen
tation/static-maps/in
tro#Zoomlevels

	Latitude / Longitude

	Defines the map
center in latitude &
longitude values
format

	

	Map background color

	Define the background
color of the map

	Possible values
applies with the
colorpicker, or input
a valid css / html
color value

For example, set the map background color to #ffc900:

[image: _images/organization_170_002.jpg]
will result in:

[image: _images/Changing_map_color.png]

Applications

Applications are the data clients of the Sentilo platform and, by
default, if you have loaded the default data, you will see two
applications registered into the Catalog:

	sentilo-catalog: it is a internal application, used by the
catalog to make calls to the API REST and therefore MUST NOT be
removed.

	testApp: as the name suggest, this application is used for
testing the platform status.

List

Access the Application list. This is the main Application page. From
here you’ll can access to the desired application to show its details by
click on it.

[image: _images/applications_170_000.jpg]
You’ll be able to list, filter, show application details, create (New
application button) and delete selected applications (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

Details tab

The detail page is structured into three tabs:

[image: _images/applications_170_001.jpg]
where:

	the Details tab contains the main properties of the application
(described below).

	the Permissionstab allows to manage the permissions for other
entities (applications or providers)

	the Active subscriptions tab displays a list with all the active
subscriptions for the current application (from version 1.5).

The main properties of the Details tab are the following:

	Property

	Description

	Comments

	Id

	Application
Identifier

	Mandatory. After its
creation it can’t be
modified. It is the
identifier used in
the API calls.

	Name

	Display name

	If not filled in by
the user, its default
value will be the
Id.

	Token

	Access key

	Automatically
generated by the
system when
application is
created. It is
theidentity_key
value used in the API
calls.
NOTE: only users
with ADMIN role will
show the entire token
chain, other user
roles only will see
obfuscated text at
this place (see
below)

	Description

	Description

	Optional. The
application
description text.

	HTTPS API REST

	Application accepts
data over HTTPS

	The Sentilo Server
itself does not
support SSL at the
moment, however you
can put a reverse
proxy such as Nginx
in front of the
Sentilo Server. If
this option is
checked, the Sentilo
Server expects the
standard header

X-Forwarded-Proto

Please note that when
configuring Nginx,
you should also use
the parameter

underscores_in_hea
ders on;

so Nginx would
forward sentilo
headers to the
Sentilo Server.

	Contact email

	Email address of the
person responsible
for the application

	Mandatory.

How users that has not ADMIN role see the detail section:

[image: _images/applications_170_002.jpg]

Permissions tab

As commented before, the Permissions tab allows you to define and
manage the authorization privileges that are granted to an application
(such privileges are named permissions) which are required for access
to the data from other entities.

There are 3 possibles permissions:

	Read: Only allows to read the data but not modify it (e.g. cannot
publish orders to sensors/actuators).

	Read-Write: allows to read and write data over the resources of an
entity, but not administer them (e.g.. cannot create new sensors for
a provider)

	Administration: full control over an entity and its resources.

By default, the application sentilo-catalog has granted the
Administration permission over all entities registered into Catalog
and, as you would expect, an application has full control over itself .

For example, at the following case where the permissions of the
application testApp are displayed:

[image: _images/applications_170_003.jpg]
We will see the following:

	The application testApp could administer the entity testApp
(obviously!)

	The application testApp could read any data from the entity
testApp_provider.

Active subscriptions tab

This tab allows you to inspect the subscriptions that an application has
registered on the platform (remember that subscriptions are [created
with the API
REST](./api_docs/services/subscription/subscription.html)),
as shown in the following picture:

[image: _images/application_subscriptionsl.png]

Providers

In Sentilo, providers are those who send data, i.e. those who publish
the data (in contrast to applications, which consume the data). If you
have loaded the default data, you will see one default provider
registered into the Catalog:

	testApp_provider: as the name suggests, this provider is used for
checking platform status.

One singularity of the providers list is the Delete action: if you
remove a provider, not only the provider will be deleted from the
backend, but also all its related resources such as components,
sensors, alerts … and any data published by its sensors, so be very
careful with this command.

[image: _images/providers_170_000.jpg]

List

Access the Providers list. This is the main Provider page. From here
you’ll can access to the desired provider to show its details by click
on it.

[image: _images/providers_170_0000.jpg]
You’ll be able to list, filter, show provider details, create (New
provider button) and delete selected providers (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page and last page, respectively).

Details tab

The detail page of a provider is structured into five tabs:

[image: _images/providers_170_001.jpg]
where

	The Details tab contains the main properties of the provider
(described below).

	The Sensors/Actuators tab displays a list with all sensors owned by
the current provider (i.e. associated with this provider).

	The Components tab displays a list with all components owned by the
current provider (from version 1.5).

	The Active subscriptions tab displays a list with all the active
subscriptions for the current provider.

	The Documentation In this tab you can upload any files relevant to
provider, such as a maintenance guide, etc.

The main properties of the Details tab are the following:

	Property

	Description

	Comments

	Identifier

	Provider identifier

	Mandatory. After its
creation can’t be
modified. It is the
identifier used in
the API calls.

	Name

	Display name

	If not filled in by
the user, its default
value will be the
Id.

	Authorization Token

	Access key

	Automatically
generated by the
system when
application is
created. It is
the* identity_key*
value used in the API
calls.
NOTE: only users
with ADMIN role will
show the entire token
chain, other user
roles only will see
obfuscated text at
this place (see
below)

	Description

	Description

	Optional. The
provider description
text.

	HTTPS API REST

	Provider sends data
over HTTPS

	The Sentilo Server
itself does not
support SSL at the
moment, however you
can put a reverse
proxy such as Nginx
in front of the
Sentilo Server. If
this option is
checked, the Sentilo
Server expects the
standard header

X-Forwarded-Proto

Please note that when
configuring Nginx,
you should also use
the parameter

underscores_in_hea
ders on;

so Nginx would
forward sentilo
headers to the
Sentilo Server.

	Contact name

	Name of the person
responsible for the
provider

	Mandatory

	Contact email

	Email address of the
person responsible
for the application

	Mandatory.

How users that has not ADMIN role see the detail section:

[image: _images/providers_170_002.jpg]

Sensors/Actuators tab

As mentioned before, this tab displays a list with all sensors
associated with the current provider, as shown in the picture below
where the sensors of the provider CINERGIA are listed:

[image: _images/providers_170_003.jpg]
You could filter, page and order the list but you cannot access to the
sensor detail: it must be done from the sensor list administration.

Components tab

As explained early, this list is very similar to the previous one but
with components.

Active subscriptions tab

The meaning of this tab is the same as described for the applications.

Documentation tab

In this tab you can upload any files relevant to provider (up to 4MB
each). The documents in total should not surpass ~16MB, which the limit
of MongoDb [https://docs.mongodb.com/manual/reference/limits].

Components

Within the context of Sentilo, components have a special meaning: they
are not linked to the API REST (except for the
catalog service), i.e.,
components are not required to publish or read data. We use components
into Catalog to group together sensors sharing a set of properties (such
as location, provider, power, connectivity, …).

You could think of them as physical devices with a set of sensors, like
a weather station or a microcontroller, with multiple sensors connected.
But not neccesarily a component needs to have sensors physically
connected to it. A gateway could also be modeled as a component: you
could have a wireless sensor network
(WSN [http://en.wikipedia.org/wiki/Wireless_sensor_network]) where
each sensor sends data to a gateway and then it sends data to Sentilo
using its Ethernet/WiFi/.. connection . In this case, the gateway will
be a component. And finally, if you have a sensor that connects to
Sentilo directly then you will have a component with only one sensor.

In short: into Sentilo, a sensor always need to be related to a
component and providers have its sensors grouped by components, as shown
in the following picture:

[image: _images/provider-component-sensor.png]

List

One singularity of the components list page are the two buttons that
allows us to change the visibility of a set of components from public
to private and vice versa. These buttons apply on the selected rows.

[image: _images/components_170_001.jpg]
You’ll be able to list, filter, show components details and create (New
component button). Like with the providers list, the component list
have a Delete button that works as follows:* if you remove a
component, not only the component will be deleted from the backend, but
also all its related resources will be deleted* such as sensors,
alerts … and any data published by its sensors, so be very careful
with this command.

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list (first page, previous page, page number, next page and last page, respectively).

Details tab

The detail page of a component is structured into five tabs:

[image: _images/components_170_002.jpg]
where:

	The Details tab displays the main properties of the component.

	The Technical details tab displays several categorized properties
of the component.

	The Additional information tab displays custom properties of the
component which are not predefined by Sentilo. See the parameter
additionalInfo
of the API docs

	The Related components tab shows other components linked with the
current component .

	The Sensors/Actuators tab shows the sensor element located in the
current component.

The main properties of the Details tab are the following:

	Property

	Description

	Comments

	Name

	Display name

	Mandatory. After its
creation can’t be
modified. It is the
identifier used in
the API calls.

	Type

	Component type.

	Mandatory. Select
from a list of
available types.

	Description

	Description

	Optional. The
component description
text.

	Provider

	Component owner

	Mandatory.

	Photo

	URL of the component
photography

	It could be defined
for each component or
it will be inherited
using the defined one
for the component
type.

	Access type

	Checkbox to set the
component visibility
as public or private
in the viewer

	

	Creation date

	Creation date

	Automatically
generated

	Update date

	Last update date

	Automatically
generated

	Tags

	Related custom tags
of the component

	Are displayed at the
public page

	Static or Mobile

	To mark the component
as static or mobile

	If the component is
static then location
is mandatory

	Address

	Address where the
component is located

	The address,
longitude and
latitude fields work
together with the
location list field.
It’s possible to use
the map to set the
points adding new
locations.

	Latitude

	Latitude in decimal
format

	

	Longitude

	Longitude in decimal
format

	

	Locations List

	Location/s of the
component

	You can configure the
component as a POI, a
polyline or a polygon
(future feature)
depending the
location composition.

Technical details tab

As noted above, this tab displays a set of properties related to the
technical details of the component such as manufacturer, serial number,
….

[image: _images/comp_tech_details.png]
where:

	Property

	Description

	Comments

	Producer

	Manufacturer

	

	Model

	Component model

	

	Serial number

	Serial number

	

	MAC

	Mac address of the
device

	

	Power type

	Energy type used by
the device

	Select from a list of
available values (see
the API for details)

	Connectivity type

	Connection type used
by the device

	Select from a list of
available values (see
the API for details)

Additional information tab

This tab displays the set of additional properties related to the
component See the parameter additionalInfo
of the API docs.

These fields are not categorized, i.e., here you could stored any device
information which will be of interest.

For each property, it will be displayed as a label-value entry where
the property’s key will be the label and the property’s value will be
the value, as shown in the following picture:

[image: _images/comp_add_info.png]
where the following map, stored on the backend, has been rendered
{“Comarca”:“Alt Empordà”,“Terme municipal”:“COLERA”,“Provincia”:“Girona”}

Sensors/actuators tab

The meaning of this tab is the same as
for the providers, but restricted to the current component.

Sensors

These section is used for creating, updating or deleting sensors or
actuators. Usually these elements are created by the provider
autonomously using the API.

The sensors list page follows the same structure as described for
components (you could change the public/private visibility or delete
sensors massively through the list).

List

It is possible to full-text search the list in the “Filter” box. The
filter works for all filter attributes except the creation date. The
Filter field is case-sensitive. Only search by the substate’s code is
possible at the moment.

[image: _images/sensors_170_000.jpg]
You’ll be able to list, filter, show sensors details, and create (New
application button) and delete selected sensors (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

Details Tab

The detail page of a sensor is structured into four tabs:

[image: _images/sensor_detail.png]
where

	The Details tab displays the main properties of the sensor.

	The Technical details tab displays several categorized properties
of the sensor.

	The Additional information tab displays the custom properties of
the sensor.

	The Latest data tab shows the latests observations received from
the sensor.

The main properties of the Details tab are the following:

	Property

	Description

	Comments

	Sensor / Actuator

	Name of the
sensor/actuator.

	Mandatory. After its
creation can’t be
modified. It is the
identifier used in
the API calls.

	Provider

	Sensor provider owner

	Mandatory

	Description

	Description

	

	Component

	Component to which
the sensor belongs

	Mandatory

	Access type

	Checkbox to set the
sensor visibility to
public or private

	

	Creation date

	Creation date

	Automatically
generated

	Update date

	Last update date

	Automatically
generated

	Type

	Sensor type

	Mandatory. Select
from a list of
available types

	Data type

	Type of data
published by the
sensor

	Mandatory. Possible
values are:

	Audio Link

	Boolean

	File link

	Image link

	JSON

	Link

	Numerical

	Text

	Video Link

	Unit

	Measurement unit

	

	Time zone

	Time zone for the
data sent by the
sensor

	

	Tags

	Related custom tags
of the sensor

	

	State

	State of the sensor

	Possible values:
online | offline. If
the sensor is
configured as offline
the API will reject
any data publication,
the alerts will be
disabled and the
sensor won’t be
visible in the map.
Likewise, offline
sensors are excluded
from the /catalog GET
request. Default
value is online.

	Substate

	Substate of the
sensor

	The list of possible
values that that have
informational purpose
and are specific for
every deployment. You
can customize the
list of possible
substate values
editing the contents
of table
sensorSubstate in
mongoDB. No default
value.

	TTL (min)

	Time of expitation of
the sensor in minutes

	This value can be
configured only
from the catalog,
Only admin should
control this value.
The default value is
redis.expire.data.seconds
from the platform server
jedis-config.properties

Technical details tab

As noted above, this tab displays a set of properties related to the
technical details of the sensor (such as the manufacturer, the
model, the serial number and the power type , all of which are
described in the component section) as shown in the following picture:

[image: _images/sensors_170_001.jpg]

Visual configuration tab

The only configurable option in this tab is “Chart values number”.
This integer indicates how many measures will be show in the observation chart of the sensor.

Additional information tab

The meaning of this tab is the same as for the components.

This tab displays the set of additional properties related to the
component See the parameter additionalInfo
of the API docs.

These fields are not categorized, i.e., here you could stored any device
information which will be of interest.

For each property, it will be displayed as a label-value entry where
the property’s key will be the label and the property’s value will be
the value.

Latest data tab

This tab, as shown in the following picture:

[image: _images/sensors_170_002.jpg]
displays both the latest observation published by the sensor and a graph
with its last activity.

Navigate the last data chart

You can navigate along the dates of the graph by using the buttons
located in the lower right corner of it:

[image: _images/chart_controls.png]

	left arrow: navigate to the past (only if there are older data)

	reload data (center button): reload last data / reset chart data

	righth arrow: navigate to the future (only if you have navigated
or gone into the past before)

Number of chart observations at chart

You can change the number of values shown in the graph. To do this,
within the sensor editing tabs, go to “Visual configuration”, and
there edit the value of the “Chart values number” field

[image: _images/sensors_170_003.jpg]
You must inform a positive value number. If blank, then default value
shall be applied as that has been configured in the organization visual
configuration.

Showing complex data

If your sensor data type is text, and it contains a complex data in json
format, Sentilo will show it as a prettified value:

[image: _images/sensors_170_004.jpg]
in this case you will have the possibility to inspect, expand or
contract the json map shown as a value using the navigation buttons:

Collapse data: the json map will be collapsed at all

[image: _images/sensors_170_005.jpg]
Expand data: the json map will be expanded at all (default view)

[image: _images/sensors_170_006.jpg]
Collapse to level X: insert a correct value for the X, and click the
button to collapse to the specified level (default level is 0, first
level)

[image: _images/sensors_170_007.jpg]

Alerts

Used for managing internal or external Alerts. Usually, external Alerts
are created by a third party autonomously via the API. This third party
could be a provider or application. Internal Alerts can be defined from
the console or using the API. Internal alerts will always be associated
to a provider.

It’s also possible to delete the items massively from the alerts list.

Properties

	Id

	Name

	Description

	ID

	Alert identifier

	After its creation
can’t be modified

	Name

	Display name

	

	Description

	Description

	

	Active

	Indicates whether the
alert is activated or
not

	When a sensor goes
into the offline
state, the associated
alerts are also
automatically
deactivated.

	Creation date

	Creation date

	Automatically
generated

	Update date

	Last update date

	Automatically
generated

	Type

	Alert type

	Internal/External

	Provider

	Related provider

	For external alerts,
a provider which will
generate the
associated alarms.
For internal alerts,
the related data
provider.

	Application

	Related provider

	Only for external
alerts, application
which will generate
the associated alarms

	Component

	Related component

	Only for internal
alerts

	Sensor

	Related sensor

	Only for internal
alerts

	Trigger type

	Type of trigger that
will be applied

	Only for internal
alerts. Value list,
see the API for
details

	Expression

	Expression to be
evaluated

	Only for internal
alerts

List

Access the Alerts list. This is the main Alert page. From here you’ll
can access to the desired alert to show its details by click on it.

[image: _images/alerts_170_000.jpg]
You’ll be able to list, filter, show alerts details, create (New alert
button) and delete selected alerts (select from left checkbox, and apply
by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

Filtering the alerts list

It is possible to full-text search the list in the “filter” box. The
field is case-sensitive. That means that you can search for full or
partial text contained in the identifier, type, trigger or status field.
If you want to search for certain trigger type, currently only searching
by trigger type’s code is possible (e.g. a search for “GT” would return
results in the above screen, whereas a search for “GT(40)” wouldn’t).

[image: _images/alert_list.png]
[image: _images/alert_edit2.png]

Alerts creation rules

It is possible to bulk-create alerts for a group of sensors. For
example, attach a rain alert rule to all pluviometers of certain
provider.

List

Accessing “Alert creation rules” menu option opens a list of existing
Alert Rules.

[image: _images/alertsrules_170_000.jpg]
You’ll be able to list, filter, show alert rules details, create (New
rules button) and delete selected rules group (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

Create rules

To create new alerts, use the “New Rules” button.

[image: _images/alerts_massive_creation.png]
After pressing the “Confirm” button, a modal window will inform on how
many alerts will be created for given combination of provider, component
type and sensor type.

[image: _images/alerts_massive_creation_confirm.png]
Subsequently, alerts are created, all having the same rule. At the
moment it is not possible to bulk-create alerts without specifying the
provider.

To bulk-delete alerts with associated with a particular rule, just
select the item from the Alert Rule list and press Delete.

Users

Used for creating, updating or deleting console users. It’s possible to
delete users massively through the elements list. There are three
available roles:

	Admin: role for administration purposes.

	Platform: platform role for internal use.

	User: visualisation role, they could access to the administration
console and read all the data, but they haven’t permission for
changing anything.

Properties

	Id

	Name

	Description

	Id

	User identifier

	After its creation
can’t be modified

	Password

	Password

	

	Repeat

	Password check

	

	Name

	User name

	

	Description

	Description

	

	Creation date

	Creation date

	Automatically
generated

	Update date

	Last update date

	Automatically
generated

	E-Mail

	User e-mail

	

	Active

	Checkbox for removing
access

	

	Role

	Related role

	Value list

List

[image: _images/users_170_001.jpg]
[image: _images/users_170_002.jpg]

Sensor types

Used for creating, updating or deleting sensor types. The sensor types
should be defined through the administrator console before adding
elements to the catalog.

It’s possible to delete elements massively through the sensor list.

Properties

	Id

	Name

	Description

	Id

	Type identifier

	After its creation can’t be modified

	Name

	Display name

	

	Description

	Description

	

	Creation date

	Creation date

	Automatically generated

	Update date

	Last update date

	Automatically generated

List

Access the main Type of Sensors / Actuators list page, will show you a
complete list of type of sensors.

[image: _images/sensorstypes_170_001.jpg]
You’ll be able to list, filter, show typologies details, create (New
typology button) and delete selected typology (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

New

Access to create new typology pressing New typology button. You must
inform an identifier, name and description (optional) for the new
typology.

[image: _images/sensorstypes_170_002.jpg]

Component types

Used for creating, updating or deleting component types. The component
types should be defined through the administrator console before adding
elements to the catalog.

It’s possible to delete elements massively through the component list.

Properties

	Id

	Name

	Description

	Id

	Type identifier

	After its creation
can’t be modified

	Name

	Display name

	

	Description

	Description

	

	Creation date

	Creation date

	Automatically
generated

	Update date

	Last update date

	Automatically
generated

	Photo

	Related photo

	Generic picture for
the component type,
will be used if there
isn’t any specified
for the component
itself

	Icon

	Related icon

	Value list from the
deployed icon list.
Used in the maps for
representing the
component

List

Access the main Component’s typology list page, will show you a complete
list of available type of components.

[image: _images/componenttypes_170_001.jpg]
You’ll be able to list, filter, show typology details, create (New
application button) and delete selected typologies (select from left
checkbox, and apply by Delete selected button).

Further, you’ll be able to export the list to Excel, by clicking on
Export to Excel button. The result file will contain the list columns
and a number of extra ones from internal database use.

Use the button panel at the bottom right to navigate through the list
(first page, previous page, page number, next page and last page,
respectively).

New

Access to create new typology pressing New typology button. You must
inform an identifier, name, description (optional), photo (optional) and
icon for the new typology.

[image: _images/componenttypes_170_002.jpg]

Multi Tenant

Introduction

The new Sentilo Multi Tenant release provides the capacity of
creating and managing virtual Sentilo instances related with different
organizations(e.g. cities). Every organization has its own context,
entities and data, and it can share information with third parties at
its will, even it’s possible to have different look & feel for every
tenant.

Above all the tenants, a new role emerges for administer the platform,
manage the organizations and create the necessary users for administer
each one. Additionally, the platform can provide addional services to
its organizations, like common integrations and offer a single map
showing the public information of all its organization.

The Sentilo multi-tennancy model implements level 3 of SAAS maturity
model, which offers a good levels of efficiency and scalability balanced
with a complexity and a reasonable operational costs:

	Single instance for all the tenants.

	Same software deployed version for all the entities.

	Unique typologies for components and sensors.

	Common data repositories for all the tenants.

	Personalization and access control for entities through admin
console.

	Personalization of look & feel for tenants.

	Delegated administration for each entity, allowing them to administer
its own data, devices, users and to share data a their will.

After configuring it, every organization has its own virtual Sentilo
instance and can be administered autonomously.

The Organization concept

The Organizations represent the different entities, usually cities, that
owns a virtual Sentilo instance. Every one can manage autonomously its
own applications, providers, components and sensors. All these elements
are property of the organization, and nobody outside the organization
can access to them, unless the organization grants access permissions to
other organizations.

Organizations are administered through the various existing user roles,
and according to them, be managed in different ways:

	Role

	Access type

	Super Admin

	The Super Admin user can create
and administer organizations,
users and typologies

	Admin

	The Admin user can only manage
its own organization parameters
and has capacity for creating his
own users, applications,
providers, components, sensors
and alerts, which will be
automatically related to its
organization

	User

	The User can only access to
public information data about the
applications, providers,
components, sensors and alerts
which belong to its own
organization

Below you can see an organization list from a multi tenant Sentilo
instance, when connecting as super admin user:

[image: _images/organization_170_0011.jpg]

Sentilo contexts

There are several virtual contexts(URL paths) for a multi tenant Sentilo
instance, one for every organization and one for the public common area.
It’s important to remark that for accessing to each organization
console, you should choose the correct path, otherwise you won’t be able
to access, even using correct credentials.

Organization console

You should access to the administration console through the
corresponding url address, adding the organization id as a last
parameter, as follows.

	http://sentilo_instance_host[:port]/sentilo-catalog-web/organizationId

In the parameter organizationId you should inform the organization
identifier where you want access to. For example, we could access to an
organization named Sample Organization, with a
sample_organization as organization identifier in a Senilo instance
deployed in a host with name example.com:

	http://example.com/sentilo-catalog-web/sample_organization

Platform console

Super Admin users should access to the catalog console without
informing any organization iddentifier in the url. In this case, no data
is filtered by organization, and all the public information is visible
in the public map and statistics:

	http://your_sentilo_server_ip/sentilo-catalog-web

Super Admin users are responsibles of configure the platform
organizations and its users, and also to define the component and sensor
typologies.

Anonymous access

Anonymous users(not logged) can access the universal viewer directly
without informing organization in the url. In this case, no data is
filtered by organization, and all public information is displayed in the
public maps and statistics, using the platform common look & feel.

	http://sentilo_instance_host[:port]/sentilo-catalog-web

In this case, the user will see all the public information provided for
the instance organizations.

Alternatively, the users can access to a specific organization public
information, specifying a different URL context:

	http://sentilo_instance_host[:port]/sentilo-catalog-web/organizationId

For example, we could access to an organization named Sample
Organization, with a sample_organization as organization
identifier in a Senilo instance deployed in a host with name
example.com:

	http://example.com/sentilo-catalog-web/sample_organization

Then the user will see all the public data offered by the Sample
Organization, displayed using the organization custom look & feel.

For the rest of it, the features and behaviour of the public area is the
same as described in Catalog and Maps
section.

Platform administration

Super Admin users are responsibles of configure the platform
organizations and its users, and also to define the component and sensor
typologies. They cannot see any organization data, such as components,
sensors, alerts.

Organization administration

List

Only the Super Admin user can list, create and delete
organizations. After the organization is created, an Admin user can
edit its own configuration settings. User role don’t have access to
this information.

[image: _images/organization_170_0011.jpg]

Details

Below, the organization creation form, as a Super Admin:

[image: _images/organization_170_0021.jpg]
In order to create an organization, we must inform, at least, these
parameters:

	identifier: an unique organization identifier

	name: the organization name

	contact name: the name of the responsible person

	contact email: the email of the responsible person

Some other parameters are optional:

	description: some description about the organization

Config params

There are some additional parameters for customizing the public &
private behavior.

[image: _images/organization_170_003.jpg]

Visual configuration

These params will apply to the entire catalog application visual
customization, and how the user will see the data. Note that time zone &
date format are directly relationated.

	Property

	Description

	Comments

	Time zone

	Defines the time zone
of the organization,
and modifies the way
to display data on
screen, such as dates

	You can define hourly
difference or time
zone abbreviations:
CET, UTC, +001…

	Date format

	Defines the date
format with which the
data will be
displayed in the
application (lists,
details…)

	Example: dd/MM/yyyy
HH:mm:ss = 30/11/2017
15:34:56
See all possible
formats as Java Date
Format, at: Java
Date Format [https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]

	Chart values number

	Number of
observations
displayed on chart

	It must be a positive
integer number
greater or equals to
10. If blank, it will
be a default value of
10.
This value will be
overwritten by
sensor’s
configuration one.

Map configuration

These params configure the universal map visualization.

	Property

	Description

	Comments

	Zoom level

	Zoom level of the
universal map

	Default value is 14.
And you can define a
value between 1 and
20.
See possible values
in:
https://developers.go
ogle.com/maps/documen
tation/static-maps/in
tro#Zoomlevels

	Latitude / Longitude

	Defines the map
center in latitude &
longitude values
format

	

	Map background color

	Define the background
color of the map

	Possible values
applies with the
colorpicker, or input
a valid css / html
color value

Users administration

The Super Admin user can create, edit and delete any user from any
Organization whatever role they have. In Addition, Super Admin role is
the unique user role that can create additional Super Admin users.

In a multi tenant instance, except for Super Admin users, when creating
users, it’s mandatory to specify the related organization.

List

[image: _images/users_170_0011.jpg]

New user

Details

The next image shows how the new user’s form is:

[image: _images/users_170_0021.jpg]
Alternatively, we can inform some configuration params that will modify
the catalog visualization for this user:

[image: _images/users_170_003.jpg]
These params will apply to the entire catalog application visual
customization, and how the user will see the data. Note that time zone &
date format are directly relationated.

	Property

	Description

	Comments

	Time zone

	Defines the time zone
of the user, and
modifies the way to
display data on
screen, such as dates

	You can define hourly
difference or time
zone abbreviations:
CET, UTC, +001…
Example: dd/MM/yyyy
HH:mm:ss = 30/11/2017
15:34:56*
Note that this value
overrides the
organization’s one,
if informed*

	Date format

	Defines the date
format with which the
data will be
displayed in the
application (lists,
details…)

	See all possible
formats as Java Date
Format, at: Java
Date Format [https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html]
Note that this value
overrides the
organization’s one,
if informed

Component and Sensor types administration

Only the Super Admin user can administer the components and sensor
types. In this case, the behaviour is the same like for a normal Sentilo
instance.

See more information about it in the [[Catalog and Maps
section>>doc:Catalog & Maps]].

Tenant administration

Admin role users are directly related with an specific organization.
They are the only ones who are able to administer the organization
private data, such as its providers, applications, components, sensors
and alarms. They can also manage its own users. The admin users will
also be capable of seeng all the defined component and sensor
typologies, but they wont be able to modify them.

Basically, the only difference between the simple Sentilo instance and a
Multi Tenant instace version is that only users from one organization
can see and access to information from its own organization. It’s also
possible to share information with another organitzations, as described
later. This data isolation make possible taking advantadge of user and
organization hierarchy.

Below, we review the specific behaviour of tenant administration,
remarking is specificities. For more information, you can read the
[[Catalog and Maps>>doc:Catalog & Maps]] section.

Organization administration

Admin users can only manage its own organization information.

[image: _images/admin_organization_170_001.jpg]
Alternatively, Admin user can manage their config params and third party
from/to permissions for sharing information purposes. You’ll find them
in the two last tabs that located in the top of the detail section.

Permission administration

	Permission type

	Functionallity

	To third party organizations
from us

	Grant read / write permissions to
other organizations over our
providers (and dependent
components / sensors / alerts).
We can add an drop these
permissions.

	From third party organizations
to us

	Read / Write permissions from
third party organizations granted
to us. We can only make them
visible or not in the universal
map.

Permissions list

[image: _images/admin_permissions_170_001.jpg]

Adding permissions

Adding to third party read & write permission:

[image: _images/admin_permissions_170_002.jpg]
Response upon permission has been created:

[image: _images/admin_permissions_170_003.jpg]
In this case we had granted read&write permissions from our
organization and our provider sample_provider to third party
organization named Sentilo. So, now the Sentilo organization can
access to the sample_provider data and manage ii (publish data).

In the other side, the Sentilo organization can see these permissions in
the second tab, Permissions from others:

[image: _images/admin_permissions_170_004.jpg]
And now, from this tab, we can
change the permission visibility on the map. Simply select the checkbox
from the permission and click on Show in map or Hide in map.

When sharing providers with other organizations, their related
entities(providers, components, sensors), will appear on the other
tenant console, but only in read mode.

Tenant resources administration: unique identifiers

Resources related to a tenant, such like providers and applications,
must have unique identifier into a Sentilo instance. But, in a multi
tenant instance, it is possible to repeat it identifier, based on its
tenant. So tenant resources are completely independent between their
tenants.

Multi tenant instances offers to the user a little visual difference.
You will inform the resource identified with its own tenant identifier
as prefix.

It is transparent for users, but in administration console you’ll see a
flag that informs you that you’re in a multi tenant instance:
sentilo@the_identifier, is related to an identifier from Sentilo
tenant organization

Applications

For application creation form you’ll see this in the Identifier field:

[image: _images/applications_170_0011.jpg]
In this case, we’re creating a application
named My Application with identifier myapp_identifier.

Providers

For the providers, we would be facing the same case as for the
Applications. Therefore, you can choose the desired identifier,
regardless of the tenant you are managing.

[image: _images/providers_170_0011.jpg]
In this case, we’re creating a provider named My Provider, with
identifier myprovider_identifier.

Clients

Contents:

	Java Client

	RaspberryPi Client

	Arduino Client

On this page you will find several tutorials about how to connect to
Sentilo using various existing platforms and languages.

Java Client
[image: java_logo.jpg]

Java library that allows
access to Sentilo Platform
through its REST API Client

RaspberryPi Client
[image: raspberrypi.jpeg]

Independent platform library
created with NodeJS that allows
embedded architectures, such as
Raspberry Pi, to communicate with
Sentilo Platform through its REST
API Client

Arduino Client
[image: arduino-mega-2560-r3.jpg]

A simple Arduino library that
allows connect with the Official
Ethernet Shield to the Sentilo
Platform

Java Client

[image: Java]

The Sentilo Java Client is a library developed for working with webapps
or standalone java applications. You can download the source code from
https://github.com/sentilo/sentilo-client-sample-java.

For this example, we’ll use a basic maven based web application, that
retrieve some system data and send it as a sensor observation to the
Sentilo Platform. This webapp is named sentilo-client-java-sample
and you’ll find it into the source code (see above).

Hardware

We don’t need any specific hardware for running this example, only one
PC with Internet connection.

Software

You’ll need some software packages, as you’re developing in Java
environment:

	Java SE 1.8

	Eclipse IDE or STS Spring IDE

	The Sentilo Client Java Library, which you can download and
install it as a Maven dependency into your project (please, see the
pom file in the project form more information)

	Tomcat 7+

	Some other Maven dependencies(you can see them in the pom file of
the example project):

	Hibernate

	Spring

	And some other…

The example

The code

You must download the sample webapp project from Git repository:
https://github.com/sentilo/sentilo-client-sample-java

Once you have the project, open it with Eclipse or another IDE and
construct it using Maven goals: clean package, for downloading
dependencies, compile the code and package it.

After that your project is compiled and packaged, you can deploy it in a
Tomcat 7 webapp container. We recommend that you use Eclipse or STS
Spring IDE to develop and open this example, and deploy it with the
Apache deployment plugins.

Now you can then navigate into the project and edit the source code.

The properties file

You must modify the properties file application.properties located
in src/main/resources/properties in order to provide your correct
Sentilo Platform Client configurations. There’re some values that are
for testing purposes, and they may not be changed.

Sentilo Platform API Services IP
rest.client.host=YOUR_SENTILO_PLATFORM_CLIENT_ADDRESS

User configurations
rest.client.identityKey=YOUR_IDENTITY_KEY
rest.client.provider=samples-provider
rest.client.component=sample-component
rest.client.component.type=generic
rest.client.component.location=41.387015 2.170047
rest.client.sensor=sample-sensor-java
rest.client.sensor.type=status
rest.client.sensor.dataType=TEXT
rest.client.sensor.location=41.387015,2.170047

This settings should be updated:

	rest.client.host: provide a correct host or ip address of your
Sentilo Platform Client, and replace the
YOUR_SENTILO_PLATFORM_CLIENT_ADDRESS with it

	rest.client.identityKey: provide your correct application
security token, and replace the YOUR_IDENTITY_KEY with it

	optionally, you can provide your component / sensor locations,
modifying the values rest.client.component.location and
rest.client.sensor.location

The samples controller

There’s a Spring MWC controller which displays a view with the sensor
data retrieved from system and the publish result. Navigate to
src/main/java and open this resource
org.sentilo.samples.controller.SamplesController.

This is a Spring Framework Controller that creates a view where you’ll
see a sample data value obtained from the System, and then send it as
observation to your Sentilo Platform instance. The webapp is based on
Maven & Spring foundations, so you must modify and provide some
configurations before start the example execution (see above).

/**
 * SamplesController
 *
 * Executes a basic Sentilo Java Client Platform example which connects to the server and publish some data to a sample sensor.
 * In this case we're getting info from the system with the runtime properties object
 *
 * @author openTrends
 */
@Controller
public class SamplesController {

 private final Logger logger = LoggerFactory.getLogger(SamplesController.class);

 private static final String VIEW_SAMPLES_RESPONSE = "samples";

 private static final int SLEEP_TIME = 1;

 @Autowired
 private PlatformTemplate platformTemplate;

 @Resource
 private Properties samplesProperties;

 @RequestMapping(value = {"/", "/home"})
 public String runSamples(final Model model) {

 // All this data must be created in the Catalog Application before starting this
 // sample execution. At least the identity key and the provider id must be
 // declared in the system
 String restClientIdentityKey = samplesProperties.getProperty("rest.client.identityKey");
 String providerId = samplesProperties.getProperty("rest.client.provider");

 // For this example we have created a generic component with a status sensor that accepts text
 // type observations, only for test purpose
 String componentId = samplesProperties.getProperty("rest.client.component");
 String sensorId = samplesProperties.getProperty("rest.client.sensor");

 logger.info("Starting samples execution...");

 String observationsValue = null;
 String errorMessage = null;

 try {
 // Get some system data from runtime
 Runtime runtime = Runtime.getRuntime();
 NumberFormat format = NumberFormat.getInstance();
 StringBuilder sb = new StringBuilder();
 long maxMemory = runtime.maxMemory();
 long allocatedMemory = runtime.totalMemory();
 long freeMemory = runtime.freeMemory();

 sb.append("free memory: " + format.format(freeMemory / 1024) + "
");
 sb.append("allocated memory: " + format.format(allocatedMemory / 1024) + "
");
 sb.append("max memory: " + format.format(maxMemory / 1024) + "
");
 sb.append("total free memory: " + format.format((freeMemory + (maxMemory - allocatedMemory)) / 1024) + "
");

 // In this case, we're getting CPU status in text mode
 observationsValue = sb.toString();

 logger.info("Observations values: " + observationsValue);

 // Create the sample sensor, only if it doesn't exists in the catalog
 createSensorIfNotExists(restClientIdentityKey, providerId, componentId, sensorId);

 // Publish observations to the sample sensor
 sendObservations(restClientIdentityKey, providerId, componentId, sensorId, observationsValue);
 } catch (Exception e) {
 logger.error("Error publishing sensor observations: " + e.getMessage(), e);
 errorMessage = e.getMessage();
 }

 logger.info("Samples execution ended!");

 model.addAttribute("restClientIdentityKey", restClientIdentityKey);
 model.addAttribute("providerId", providerId);
 model.addAttribute("componentId", componentId);
 model.addAttribute("sensorId", sensorId);
 model.addAttribute("observations", observationsValue);

 ObjectMapper mapper = new ObjectMapper();

 try {
 if (errorMessage != null && errorMessage.length() > 0) {
 Object json = mapper.readValue(errorMessage, Object.class);
 model.addAttribute("errorMsg", mapper.writerWithDefaultPrettyPrinter().writeValueAsString(json));
 } else {
 model.addAttribute("successMsg", "Observations sended successfully");
 }
 } catch (Exception e) {
 logger.error("Error parsing JSON: {}", e.getMessage(), e);
 errorMessage += (errorMessage.length() > 0) ? "
" : "" + e.getMessage();
 model.addAttribute("errorMsg", errorMessage);
 }

 return VIEW_SAMPLES_RESPONSE;
 }

 /**
 * Retrieve catalog information about the sample provider. If the component and/or sensor doesn't
 * exists, it will create them
 *
 * @param identityToken Sample identity token
 * @param providerId Samples provider id
 * @param componentId Samples component id
 * @param sensorId Samples sensor id
 * @return {@link CatalogOutputMessage} object with provider's catalog data
 */
 private CatalogOutputMessage createSensorIfNotExists(String identityToken, String providerId, String componentId, String sensorId) {
 List<String> sensorsIdList = new ArrayList<String>();
 sensorsIdList.add(sensorId);

 // Create a CatalogInputMessage object for retrieve server data
 CatalogInputMessage getSensorsInputMsg = new CatalogInputMessage();
 getSensorsInputMsg.setProviderId(providerId);
 getSensorsInputMsg.setIdentityToken(identityToken);
 getSensorsInputMsg.setComponents(createComponentsList(componentId));
 getSensorsInputMsg.setSensors(createSensorsList(providerId, componentId, sensorsIdList));

 // Obtain the sensors list from provider within a CatalogOutputMessage response object type
 CatalogOutputMessage getSensorsOutputMsg = platformTemplate.getCatalogOps().getSensors(getSensorsInputMsg);

 // Search for the sensor in the list
 boolean existsSensor = false;
 if (getSensorsOutputMsg.getProviders() != null && !getSensorsOutputMsg.getProviders().isEmpty()) {
 for (AuthorizedProvider provider : getSensorsOutputMsg.getProviders()) {
 if (provider.getSensors() != null && !provider.getSensors().isEmpty()) {
 for (CatalogSensor sensor : provider.getSensors()) {
 logger.debug("Retrieved sensor: " + sensor.getComponent() + " - " + sensor.getSensor());
 existsSensor |= sensorId.equals(sensor.getSensor());
 if (existsSensor) {
 break;
 }
 }
 }
 }
 }

 // If the sensor doesn't exists in the retrieved list, we must create it before publishing the
 // observations
 if (!existsSensor) {
 // Create a CatalogInputMessage object for retrieve server data
 CatalogInputMessage registerSensorsInputMsg = new CatalogInputMessage(providerId);
 registerSensorsInputMsg.setIdentityToken(identityToken);
 registerSensorsInputMsg.setComponents(createComponentsList(componentId));
 registerSensorsInputMsg.setSensors(createSensorsList(providerId, componentId, sensorsIdList));

 // Register the new sensor in the server
 platformTemplate.getCatalogOps().registerSensors(registerSensorsInputMsg);
 }

 return getSensorsOutputMsg;
 }

 /**
 * Publish some observations from a sensor
 *
 * @param identityToken Samples Application identity token for manage the rest connections
 * @param providerId Samples provider id
 * @param componentId Samples component id
 * @param sensorId Samples sensor id
 * @param value Observations value, in our case, a String type
 */
 private void sendObservations(String identityToken, String providerId, String componentId, String sensorId, String value) {
 List<String> sensorsIdList = new ArrayList<String>();
 sensorsIdList.add(sensorId);
 createSensorsList(providerId, componentId, sensorsIdList);

 List<Observation> observations = new ArrayList<Observation>();
 Observation observation = new Observation(value, new Date());
 observations.add(observation);

 SensorObservations sensorObservations = new SensorObservations(sensorId);
 sensorObservations.setObservations(observations);

 DataInputMessage dataInputMessage = new DataInputMessage(providerId, sensorId);
 dataInputMessage.setIdentityToken(identityToken);
 dataInputMessage.setSensorObservations(sensorObservations);

 platformTemplate.getDataOps().sendObservations(dataInputMessage);
 }

 /**
 * Create a component list
 *
 * @param componentId Component identifier
 * @return A {@link CatalogComponent} list
 */
 private List<CatalogComponent> createComponentsList(String componentId) {
 List<CatalogComponent> catalogComponentList = new ArrayList<CatalogComponent>();
 CatalogComponent catalogComponent = new CatalogComponent();
 catalogComponent.setComponent(componentId);
 catalogComponent.setComponentType(samplesProperties.getProperty("rest.client.component.type"));
 catalogComponent.setLocation(samplesProperties.getProperty("rest.client.component.location"));
 catalogComponentList.add(catalogComponent);
 return catalogComponentList;
 }

 /**
 * Create a sensor list
 *
 * @param componentId The Sample Component Id
 * @param sensorsIdList A list with the sensor ids to create
 * @return A {@link CatalogSensor} list
 */
 private List<CatalogSensor> createSensorsList(String providerId, String componentId, List<String> sensorsIdList) {
 List<CatalogSensor> catalogSensorsList = new ArrayList<CatalogSensor>();
 for (String sensorId : sensorsIdList) {
 CatalogSensor catalogSensor = new CatalogSensor();
 catalogSensor.setComponent(componentId);
 catalogSensor.setSensor(sensorId);
 catalogSensor.setProvider(providerId);
 catalogSensor.setType(samplesProperties.getProperty("rest.client.sensor.type"));
 catalogSensor.setDataType(samplesProperties.getProperty("rest.client.sensor.dataType"));
 catalogSensor.setLocation(samplesProperties.getProperty("rest.client.sensor.location"));
 catalogSensorsList.add(catalogSensor);
 }
 return catalogSensorsList;
 }
}

What’s happenning?

	Firts of all, we’re looking for some configuration settings, like the
component and sensor names

	Next, we’re using some runtime status values, so we can the publish
them as a observations (mem status, for example)

	First of all, we check if the sensor has been created before in the
Catalog, and if it doesn’t exists we add it

	After that, we’ll publish the sensor observations

	Then, we pass all this information to the view for displaying it the
navigator window

This is an observation sample:

CPU states: 5.8% user, 1.9% system, 0.0% nice, 0.0% wait, 91.7% idle

The samples page view

And finally, this is the source code of the view:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ page contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>
<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <h3>Observations:</h3>
 <p>${observations}</p>

 <c:if test="${not empty successMsg}">
 <h3>Success:</h3>
 <p>${successMsg}</p>
 </c:if>

 <c:if test="${not empty errorMsg}">
 <h3>Error:</h3>
 <pre>${errorMsg}</pre>
 </c:if>

 <button onclick="location.reload();">Send observations</button>

 </body>

</html>

This source code is quite easy, so don’t need to comment it.

Executing the sample application

Using the Eclipse IDE or copying the WAR file, deploy your webbapp into
the Tomcat deployments directory, and start it.

You must access to this url (we assume that you’re in your localhost and
your port is the 8080, the default values):
http://localhost:8080/sentilo-samples

And then you must see a result page like this:

[image: java_sample_4.jpg]

As you can see, there’s a button named Send observations. You can use
to re-send observations and reload the page. Every page reload send the
observatios to the Sentilo Platform Client.

RaspberryPi Client

[image: RaspberryPi]

The SentiloClientNodej is a library written in javascript that
brings to you the possibility to connect any device and embedded device
with Node.js to a Sentilo instance easily.

For this example we’ll use a Raspberry pi device, because its special
features, like cheap price, small dimensions and the great input-output
possiblities.

Hardware

We need some hardware to execute this example:

	Material

	Description

	Raspberry Pi

	Of course, we need a Raspberry
Pi, doesn’t matters its version.
You need a Raspbian distro
installed too

	Ethernet cable or wifi dongle

	Doesn’t matter what network
hardware do you use, it’s up to
you, but you’ll need the correct
drivers correctly configured for
connecting to Internet

	Some cables

	Some “dupont” male-to-female
cables to make breadboard
connections

	A LED

	We’ll use a LED as an output for
simulating order execution, you
can pick any color

	A resistor

	A 470 Ohms 1/4W resistance

	A breadboard

	You’ll need an electronic
connections base to make some
circuits, so we’ll recommend you
to get a breadboard

Software

We need to install some node.js alternative modules or libraries. We’ll
install them through npm or download them from the Internet. See the
next section for more information.

Setup the Raspi

In this example we’ll show to you how to implement a sensor and a
actuator with several capabilities such as:

	get values from one o more sensors connected to it GPIO port and
publish them in Sentilo

	receive orders from a Sentilo application and actuate on the GPIO in
consequence

We’re assuming that you have yet installed Node.js in your system and
your user has privileges to manage the GPIO. If not, you can try an easy
tutorial like the described in this
link [https://learn.adafruit.com/node-embedded-development/installing-node-dot-js].

NOTE: we recommend that you have installed latest versions of
Node.js and npm. You can test it as follow:

pi@raspberrypi ~/sentilo $ node -v
v0.12.1
pi@raspberrypi ~/sentilo $ npm -v
2.5.1

The software

Create the workspace

First of all, create a directory named sentilo (for example) in our
user home and change to it:

pi@raspberrypi ~ $ mkdir sentilo && cd sentilo

Here we’ll work with all our files.

Install the SentiloClientNodejs library

Download the library, that allow to us to access some Sentilo operations
easily.

You muy download it from the Sentilo Git
repository [https://github.com/sentilo], and clone it into your
working directory:

pi@raspberrypi ~/sentilo $ git clone https://github.com/sentilo/sentilo-client-nodejs

After that, you may have a directory structure like this into the
sentilo-client-nodejs directory:

pi@raspberrypi ~/sentilo $ ls -la sentilo-client-nodejs
total 28
drwxr-xr-x 4 pi pi 4096 nov 17 13:00 .
drwxr-xr-x 3 pi pi 4096 nov 17 13:00 ..
drwxr-xr-x 8 pi pi 4096 nov 17 13:00 .git
-rw-r--r-- 1 pi pi 1352 nov 17 13:00 LICENSE
-rw-r--r-- 1 pi pi 257 nov 17 13:00 package.json
-rw-r--r-- 1 pi pi 3079 nov 17 13:00 README.md
drwxr-xr-x 3 pi pi 4096 nov 17 13:00 src

Here we have the core library (the src directory) and now we can
write down the example files (see below).

Install some library dependencies

We need some Node.js modules to work with our library. So you need to
download and install the throgh npm.

You can download via npm update:

pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm

Or install them directly:

pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install restify
pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install sync-request
pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ npm install onoff

Ok, but, what are they?

	restify is a rest server interface for Node.js that allow to us
to create a rest server easily (see this
link [https://www.npmjs.com/package/restify] for more information)

	sync-request, allow to us to create synchronous http calls (see
this link [https://www.npmjs.com/package/sync-request] for more
information)

	onoff, a GPIO driver that allow to us to turn on and off a LED
very easily! (see this
link [https://www.npmjs.com/package/tm-onoff] for more
information)

Now, we can start to debvelop with node in our working directory

Connecting the hardware

We’ll assume that you have your Raspberry Pi connected to the Internet,
a Raspbian system correctly installed and enough permissions to create
and runs scripts in your user home. Usually, we will use the pi
user.

To simulate a sensor’s actuator, we’ll use a LED connected to the GPIO
14 from the Raspberry Pi.

Let see it below:

[image: raspi3.png]

As you can see, we only connect the LED annode to the 14
GPIO pin, and the kathode to the GND pin. We’re ready to turn
ON and OFF this LED from the Sentilo platform.

The example

Our example is a complete suit to test the SentiloClientNodejs library.

The library allow to you to performs these operations:

	Catalog

	Get sensors from a provider

	Register sensors for a provider

	Update sensors configuration

	Register alerts

	Alarm

	Publish alarms

	Data

	Retrieve last observations from a sensor

	Publish observations

	Subscription

	Subscribe orders from a sensor

	Subscribe orders for all the sensors of a provider

In our example, we’ll use almost of the to show you how interact with
Sentilo platform

The code

We’ve created our working directory, and connected all the necessary
hardware. Now we can take a look to the example code.

The next files was included into the library directory, so you have they
into your working directory.

Note that you can download these all example files from
https://github.com/sentilo/sentilo-client-sample-nodejs.

actuator.js

This file contains code to control the output LED, that performs a
simulation of a possible actuator controlled by the Raspberry Pi and
orders published on the Sentilo platform. In the example, the system is
being subscribed as enpoint to receive incoming order actuation calls.

var Gpio = require('onoff').Gpio;
var led;

/**
 * Sample module that perfoms operations over the actuator
 */
module.exports = {

 /**
 * Initializes the actuator. For this example, we've connected a LED as a
 * output in the GPIO 14
 */
 init : function() {
 // Configure the GPIO as OUTPUT
 led = new Gpio(14, 'out');

 console.log('Turning OFF the LED');

 // Turn off the LED on startup
 led.writeSync(0);
 },

 /**
 * Execute an order in the actuator. For this example, we've mounted a LED
 * in GPIO 14, where we can turn it ON (order=ON) or OFF (order=OFF)
 *
 * @param order
 * A Sentilo order object structure
 */
 executeOrder : function(order) {
 console.log('Executing order: ' + order.message);

 if (order.message === 'ON') {
 console.log('Turning ON the LED');
 led.writeSync(1);
 } else if (order.message === 'OFF') {
 console.log('Turning OFF the LED');
 led.writeSync(0);
 }

 }

};

What’s happening here?

	The init function configures the GPIO 14 as an output to control
the LED (don’t forget to call it!)

	The executeOrder function performs the actuator order execution,
for our case, lets turn ON and OFF the LED if the order was ON or
OFF. The main server code will access to this function to actuate
over the sensor actuator.

sensor.js

This file contains the code that performs a possible sensor data read
and return its value. For our example, we only emulate a random value as
a possible sensor data value. You may develop an data input sensor with
a GPIO library.

module.exports = {

 /**
 * Retrieve data from the sensor
 *
 * @returns {String}
 */
 readSensorValue : function() {

 // TODO: Implement this method

 // Return some random value between 0 and 255
 var sensorValue = Math.floor((Math.random() * 255));

 return sensorValue;
 }

};

What’s happening here?

	The readSensorValue function reads a possible sensor input data
value from an external way. The main server code will access to this
function to read the sensor data.

NOTE: as you see, you must implement this function to complete your
requirements

sentilo.js

This file is a little interface that wraps the general calls to the
library. Its function is make more easy the interactuation between the
server and the library. It isn’t really necessary, but is a good method
to modularize the code.

var servicesConfig = require('./sentiloclient/ServicesConfiguration');
var logger = require('./sentiloclient/utils/SentiloLogs');
var utils = require('./sentiloclient/utils/SentiloUtils');

var catalog = require('./sentiloclient/CatalogServiceOperations');
var data = require('./sentiloclient/DataServiceOperations');
var alarm = require('./sentiloclient/AlarmServiceOperations');
var subscribe = require('./sentiloclient/SubscriptionServiceOperations.js');

module.exports = {

 /**
 * Initialize the services with default and cuistom options
 */
 init : function(initOptions) {
 // Initialize the services
 catalog.init(initOptions);
 data.init(initOptions);
 alarm.init(initOptions);
 subscribe.init(initOptions);

 logger.debug("Samples module initialization successful");
 },

 /**
 * Search a sensor in the catalog
 *
 * @return boolean
 */
 existsSensorInCatalog : function(options) {
 // Get all sensors from provider
 var response = catalog.getSensors(options);

 // The params os the example
 var provider = options.provider;
 var sensor = options.sensor;

 // Look the desired sensor in the catalog...
 var existsSensor = false;
 if (response && response.providers) {
 var providers = response.providers;
 for (var p = 0; p < providers.length; p++) {
 var provider = providers[p];
 if (provider.sensors && provider.sensors.length > 0) {
 var sensors = provider.sensors;
 for (var s = 0; s < sensors.length; s++) {
 var sensor = sensors[s];
 if (sensor === sensor.sensor) {
 existsSensor = true;
 break;
 }
 }
 }
 }
 }

 logger.debug('Exists the \'' + provider + '\' and \'' + sensor + '\' in the catalog? ' + existsSensor);

 return existsSensor;
 },

 /**
 * Create a sensor
 */
 createSensor : function(options) {
 logger.debug('Adding the sensor \'' + options.sensor + '\' to the catalog...');

 // Create an input message to inform the new sensor data
 // We are using the sample data, defined in ServicesConfiguration module
 var inputMessage = {
 body : {
 sensors : [{
 sensor : options.sensor,
 description : options.sensorDesc,
 type : options.sensorType,
 dataType : options.sensorDataType,
 unit : options.sensorUnit,
 component : options.component,
 componentType : options.componentType,
 location : options.sensorLocation
 }]
 }
 };

 logger.debug(inputMessage);

 var response = catalog.registerSensors(inputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error registering the sensors');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 },

 /**
 * Publish observations
 */
 publishObservations : function(value, options) {
 var observationsInputMessage = {
 body : {
 observations : [{
 value : value
 }]
 }
 };

 observationsInputMessage = utils.mergeOptions(observationsInputMessage, options);

 var response = data.sendObservations(observationsInputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error publishing observations');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 },

 /**
 * Create an alert list
 */
 createAlerts : function(alertsList) {
 var alertsImputMessage = {
 body : {
 alerts : alertsList.alerts
 }
 };

 var response = catalog.registerAlerts(alertsImputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error registering alerts');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 },

 /**
 * Publish an alarm
 */
 publishAlarm : function(alert, inputMessage) {
 var alarmInputMessage = {
 body : {
 message : inputMessage.message
 }
 };

 var response = alarm.publish(alert, alarmInputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error publishing alarm');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 },

 /**
 * Subscribe to a sensor order
 */
 subscribeOrder : function(inputMessage) {
 var subscriptionInputMessage = {
 body : {
 endpoint : inputMessage.endpoint
 }
 };

 var response = subscribe.subscribe(subscriptionInputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error subscribing order');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 },

 /**
 * Subscribe to all sensors orders from a provider
 */
 subscribeOrderToAll : function(inputMessage) {
 var subscriptionInputMessage = {
 body : {
 endpoint : inputMessage.endpoint
 }
 };

 var response = subscribe.subscribeToAll(subscriptionInputMessage);
 if (response && response.code && response.code === 400) {
 logger.error('Error subscribing order');
 logger.error(response);
 return false;
 } else {
 return true;
 }
 }
};

Here you can see direct calls to the library, so the only differences
are several logs and the initialization of some configuration variables.

server.js

This is the main node file. This file performs a rest server and still
waiting for incoming calls that apply to the actuator.

// A very simple RESTFul server module
var restify = require('restify');

// The OS information module
var os = require('os');

// Include some Sentilo operations
var sentilo = require('./sentilo.js');

// Module that interacts with the local sensor
var sensor = require('./sensor.js');

// Module that interacts with the local actuator
var actuator = require('./actuator.js');
actuator.init();

// Get some OS values, like the sensor IP
var interfaces = os.networkInterfaces();
var addresses = [];
for (var k in interfaces) {
 for (var k2 in interfaces[k]) {
 var address = interfaces[k][k2];
 if (address.family === 'IPv4' && !address.internal) {
 addresses.push(address.address);
 }
 }
}
var myIp = addresses[0];
var myPort = 8080;
var myEndpoint = 'http://'+myIp+':'+myPort;
var myOrderEndointPath = '/order';
var myOrderEndoint = myEndpoint + myOrderEndointPath;

console.log('My ip address is: ' + myIp + ', and my port: ' + myPort);

// Service and example options
// You must modify it under your requeriments
var samplesOptions = {
 host : 'YOR_SERVER_HOST',
 port : 'YOUR_SERVER_PORT',
 headers : {
 identity_key : 'YOUR_IDENTITY_KEY'
 },
 tokenId : 'YOUR_IDENTITY_KEY',
 providerTokenId : 'YOUR_PROVIDER_IDENTITY_KEY',
 provider : 'samples-provider',
 sensor : 'sample-sensor-nodejs',
 component : 'sample-component',
 componentType : 'generic',
 sensorDataType : 'TEXT',
 sensorType : 'status',
 sensorUnit : '',
 sensorLocation : 'YOUR_SENSOR_LOCATION'
};

// Starts a RESTFul server to manage orders inputs via POST calls
var server = restify.createServer({
 name : 'SentiloClient for Nodejs Example Server',
 version : '1.0.0'
});
server.use(restify.acceptParser(server.acceptable));
server.use(restify.queryParser());
server.use(restify.bodyParser());

// We only need a POST endpoint service to receive ordercs callbacks
// The path will be [POST] http://localhost:8080/order
server.post('/order', function(req, res, next) {
 res.send(req.params);

 console.info("[POST] Order received: " + JSON.stringify(req.params));

 // Execute the order in the actuator
 actuator.executeOrder(req.params);

 var value = 'Order received and executed: ' + JSON.stringify(req.params.message);
 sentilo.publishObservations(value, samplesOptions);

 return next();
});

// Starts the server and listen on port 8080
server.listen(myPort, function() {
 console.log('%s listening at %s', server.name, myEndpoint);
 console.log('The server is now ready to receive POST incoming calls');
});

// Init Sentilo services for this example
// Here you must pass as paramether the specific configuration
sentilo.init(samplesOptions);

// Test if is there the sensor configured in the catalog
var existsSensor = sentilo.existsSensorInCatalog(samplesOptions);
if (!existsSensor) {
 // If not, then create it
 sentilo.createSensor(samplesOptions);
}

// Now we can publish a first alarm that informs that the sensor is up
// First of all let create an external alert
console.log('Registering the System Status Alert...');
var alertsListInputMessage = {
 alerts : [{
 id : 'SYSTEM_STATUS_ALERT',
 name : 'SYSTEM_STATUS_ALERT',
 description : 'Custom alert to inform the system status',
 type : 'EXTERNAL'
 }]
};
sentilo.createAlerts(alertsListInputMessage);

// And then, we can publish an alarm to inform that the system is up now
var alarmInputMessage = {
 message : 'The system goes up on ' + new Date()
};
sentilo.publishAlarm('SYSTEM_STATUS_ALERT', alarmInputMessage);
console.log('Alarm published: ' + alarmInputMessage.message);

// Subscribe the sensor orders
// We'll manage it throught our server on POST service
var subscriptionInputMessage = {
 endpoint : myOrderEndoint
};
sentilo.subscribeOrder(subscriptionInputMessage);
// sentilo.subscribeOrderToAll(subscriptionInputMessage);

// Now, we can publish observations every 60 seconds
// And still waiting for incoming orders
var systemObservationsTimeout = 60000;
console.log('The sensor is now up, and we\'ll be sending some observations every ' + systemObservationsTimeout + ' ms');
setInterval(function() {
 // Send some System information
 var freeMemValue = "OS freemem: " + os.freemem();
 console.log('Retrieved system freemem value: [' + freeMemValue + '] and publishing it as an observation...');
 sentilo.publishObservations(freeMemValue, samplesOptions);

 // Retrieve some sensor data and send it as observation...
 var sensorDataValue = "Sensor value: " + sensor.readSensorValue();
 console.log('Retrieved sensor value: [' + sensorDataValue + '] and publishing it as an observation...');
 sentilo.publishObservations(sensorDataValue, samplesOptions);
}, systemObservationsTimeout);

First of all, we’ll see the configuration options. They must be changed
before run this example.

You must provide the correct values for these variables located into the
samplesOptions object:

	YOR_SERVER_HOST: provide the correct ip address or host of
your Sentilo’s instance rest server

	YOUR_SERVER_PORT: provide the correct port of your Sentilo’s
instance rest server

	YOUR_IDENTITY_KEY: you must provide your private security key
(tokenId) that identifies your application. Remember that this
application must have ADMIN permissions over all yours providers,
components and sensors for this example

	YOUR_PROVIDER_IDENTITY_KEY: like above, you must provide your
provider’s security token id

	YOUR_SENSOR_LOCATION: this is optional, identifies the component
location of the sample sensor

All the other configurations and variables are correctly coded and you
don’t need to change any more.

Now, what’s happens in this code?

	First of all, we’re start a rest server with the restify
module, that allow to us to provide an endpoint for incoming order
calls (POST method). After that, we create a subscription for our
orders.

	When a POST call is received, the server will call the actuator’s
executeOrder function, so we can manage the order correctly (turn
ON/OFF the LED, for example)

	Initialize the sentilo’s helper module (as you can see above),
implemented by the sentilo.js file

	We’re passing to it our specific services configuration, like the
sensor id, provider’s token, etc…

	Request for the sensor in the Sentilo Catalog platform, and if it
doen’t exists, create it

	Once we have created the sensor, we’re creating an alert, named
SYSTEM_STATUS_ALERT, and publishing an initial alarm that says
The system goes up on {date}. Then, the sensor is up and we’re
informing it to the system

	After tgat, retrieve some system and sensor data values and publish
them every 60000ms (1 minute) in a infinite loop

Executing the example

Now we can finally execute the example.

Simple type:

pi@raspberrypi ~/sentilo/sentilo-client-nodejs $ node server.js
Turning OFF the LED
My ip address is: 127.0.0.1, and my port: 8080
Registering the System Status Alert...
Alarm published: The system goes up on Thu May 07 2015 13:52:21 GMT+0000 (UTC)
The sensor is now up, and we'll be sending some observations every 60000 ms
SentiloClient for Nodejs Example Server listening at http://127.0.0.1:8080
The server is now ready to receive POST incoming calls

And now, the server is waiting for publish the observations everi 60
seconds:

Retrieved system freemem value: [OS freemem: 846716928] and publishing it as an observation...
Retrieved sensor value: [Sensor value: 64] and publishing it as an observation...

Publishing and accepting orders

The server also is witing for incoming POST calls that responses the
ORDER requests. You can practice with orders, sending a PUT message to
the Sentilo platform, some like this:

http://sentilo_platform_ip:8081/order/samples-provider/sample-sensor-nodejs

With these values:

HEADER > identity_key : 'YOUR_IDENTITY_KEY'
BODY > {"order" : "ON"} > this turns ON the LED
BODY > {"order" : "OFF"} > this turns OFF the LED

After that, you’ll see in the console some log like this when you’re
turning the LED ON, sending order = ON:

[POST] Order received: {"message":"ON","timestamp":"07/05/2015T13:58:20","topic":"/order/samples-provider/sample-sensor-nodejs","type":"ORDER","sensor":"sample-sensor-nodejs","provider":"samples-provider","sender":"samples-provider","time":1431007100595}
Executing order: ON
Turning ON the LED

Or turning it OFF, with order = OFF:

[POST] Order received: {"message":"OFF","timestamp":"07/05/2015T14:01:13","topic":"/order/samples-provider/sample-sensor-nodejs","type":"ORDER","sensor":"sample-sensor-nodejs","provider":"samples-provider","sender":"samples-provider","time":1431007273310}
Executing order: OFF
Turning OFF the LED

Debugging the library

If you need to debug your execution, you can edit the file
/sentiloclient/utils/SentiloLogs.js and edit the logs configuration
properties, as you need:

var options = {
 className : 'Sentilo',
 enableLogs : true,
 enableDebug : false,
 enableInfo : true,
 enableWarn : true,
 enableError : true,
 enableFatal : true
};

For our purpose, we only have DEBUG, INFO and ERROR logs. Try tu use
true or false for each one.

Arduino Client

[image: Arduino]

The SentiloClient Library for Arduino offers a basic C++ library
implementation that allows to the developer a quick integration sketch
with the Sentilo Platform through its API Rest Client.

For these examples we’ll create a new sensor in the Sentilo Platform,
only if it doesn’t exists, and then we’re going to publish some
observations obtained from the local sensors.

Hardware

We’ll need some hardware materials:

	Material

	Description

	>Arduino board

	We recommend that you use a
Mega 2560 board, which brings
to you a bit more program memory
than Uno.

	>Official Ethernet Shield for
Arduino

	The library is based on the
communication layer that provides
the Official Ethernet Shield.
Basically, it is a http rest
client module.

	Some sensors

	For these examples we’ll use two
types of sensors: a LM35
temperature sensor, and a basic
LDR brightness sensor
(photocell)

	Resistences

	Two 1KOhm resistences 1/4W

	Breadboard

	A breadboard that allow to you
the quick connection of the
electronic components

	Wires

	Connection wires, like ‘dupont’
male-to-male ones, that brings to
you easily connection between the
Arduino board and the breadboard
and the sensors

	Ethernet cable

	A cable for connecting the
Ethernet Shield to the Internet
through your router o modem

	B type USB cable

	A cable for connecting your
Arduino board to the PC

Software

We’ll use the Official Arduino IDE, that you can download from
here [http://www.arduino.cc/en/Main/Software]. Of course, you’ll
need a PC, with Windows or Linux, or a Mac computer.

Setup the Arduino

The Arduino IDE

We assume that you have installed the Arduino IDE and you know how
to use it :). If not, then you can have a look on this
link [http://www.arduino.cc/en/Guide/HomePage].

Download and install the library

Download our SentiloClient library or clone it from Git via this
link: https://github.com/sentilo/sentilo-client-arduino, and then
install it as a custom library into your Arduino IDE. If you don’t know
how to install custom libraries, you can have a look on this
link [http://www.arduino.cc/en/guide/libraries], see the Importing
a .zip Library section.

The example

First example: publishing a basic observation

Once you have installed the library into the Arduino IDE, you can go to
the menu option File > Examples > SentiloClient >
SentiloClient-Example-01 and open the sample code. In this example
Arduino is going to connect to the network and publish a basic
observation with these contents: “This is a sample observation”.

Sentilo configuration

You must have configured this information in the Sentilo catalog:

	A provider (in our case, named samples-provider) and its token

	A component (in our case, named sample-component)

	A sensor (in our case, named sample-sensor-arduino-01 for the
first example, and another one named sample-sensor-arduino-02 for
the second one), with this minimum configuration settings:

sensor = sample-sensor-arduino-01
type = status
dataType = TEXT
component = sample-component
componentType = generic

Then, you must replace the client connection data code (next section)
with yours settings:

	Change the value “YOUR_API_KEY” with the api key of your provider
(variable apiKey)

	Change the value “YOUR_IP_ADDRESS” with the ip address of your
Sentilo instance (variable ip)

	Change the value “YOUR_PORT” with the port of your Sentilo server
instance port (variable port)

The code

You’ll should see this code in the editor:

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";
char* providerId = "samples-provider";
char* sensorId = "sample-sensor-arduino-01";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** GLOBAL VARS *************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
String response = ""; // Rest call response (normaly as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

void setup() {
 // Begin serial for debug purposes
 Serial.begin(9600);

 // Setup the Sentilo Client and the network connection
 setupSetiloClient();

 // Wait time for a general calibration
 delay(generalCalibrationTimeout);
}

void loop() {
 // Create the Observation object
 SentiloClient::Observation observation;
 observation.value = "This is a sample observation";

 Serial.println("[loop] Publishing a sample observation...");

 // Publish the observation to Sentilo Platform
 statusCode = sentiloClient.publishObservation(providerId, sensorId, observation, apiKey, response);

 // Read response status and show an error if it is necessary
 if (statusCode !## 200) {
 Serial.print("[loop] [ERROR] Status code from server after publish the observations: ");
 Serial.println(statusCode);
 Serial.print("[loop] [ERROR] Response body from server after publish the observations: ");
 Serial.println(response);
 }

 Serial.println("[loop] Sample observation published!");
 Serial.println("[loop] Program ended");

 // The example has ended, so we are going to execute an infinite loop
 while (true) {}
}

/** Setup the Sentilo Client object, this process also configures the network connection **/
void setupSetiloClient() {
 Serial.print("[setup] Connecting to network via DHCP ");
 sentiloClient.dhcp();
 for (int i = 0; i < networkConnectionTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 Serial.println("[setup] Connection is now established!");
}

What can we see in this example?

	We are setting up the Serial channel for debug output

	Setup the SentiloClient object (sentiloClient), which
configures the client and connects to the network

	Once we’re connected to the server, we publish a basic observation,
with these contents: “This is a sample observation”

	If the publish works properly, the system don’t return any special
data

	Otherwhise, it will show to you the system return code and
message, if it is possible

	The test ends after publish only one observation

Second example: publishing sensors data as observations

In this case we’ll retrieve data from sensors (LDR and LM35), and then
we’ll publish them as a observation, with a message in JSON format, like
that:

{"ldr":"{ldrValue}","lm35":"{lm35Value}"}

Where the ldrValue contains the LDR photocell value, and the
lm35Value contains the LM35 temperature value. Open the sample code
in File > Examples > SentiloClient > SentiloClient-Example-02.

Connect the sensors and and other connections

Now, it is the time to connect the sensors and others elements.

See below:

[image: arduino_sensors_board.png]

In the upper image, you can see how the components has been located:

	Connect the positive pin from Arduino (+5V) to the upper
channel of the breadboard (red channel)

	Connect the negative pin from Arduino (GND) to the second
channel of the breadboard (blue channel)

	LDR photocell sensor connection:

	Connect the LDR photocell between GND signal and A0 (Analog IO
0 from Arduino) with a dupont wire, in this case, the orange color
wire

	Connect the LDR pin that holds the orange wire with a 1KOhm
resitor, and the other resistor pin to Arduino +5V (red wire)

	LM35 temperature sensor:

	Connect the LM35 positive pin (left pin, front side) to
Arduino +5V

	Connect the LM35 center pin (signal) to the A5 (Analog IO 5
from Arduino) with a dupont wire, in this case, the orange color
wire

	Connect the LM35 negative pin (right pin, front side) to
Arduino GND

The code

You should see this code in the editor:

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENSORS *****************************/
/***/
int LDR = 0; // LDR input is A0
int LM35 = 5; // LM35 input is A5
const int ldrSetupTimeout = 10; // Time that LDR needs to be configures (dummy time)
const int lm35SetupTimeout = 10; // Time that LM35 needs to be configures (dummy time)

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";
char* providerId = "samples-provider";
char* sensorId = "sample-sensor-arduino-02";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** GLOBAL VARS *************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
const int loopTimeout = 60000; // Loop timeout, time between observations (in ms)
String response = ""; // Rest call response (normaly as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

boolean existsSensor = false;

void setup() {
 // Begin serial for debug purposes
 Serial.begin(9600);

 // Setup the LDR sensor
 setupLDR();

 // Setup the LM35 sensor
 setupLM35();

 // Setup the Sentilo Client and network connection
 setupSetiloClient();

 // Wait time for a general calibration
 delay(generalCalibrationTimeout);
}

void loop() {
 // Get the LDR value
 int ldrValue = getLdrValue();

 // Get the LM35 value
 float lm35Value = getLM35Value();

 // Create the observation input message like this: {"ldr":"234","lm35":"24.5"}
 String obsInputMsg =
 "{\\\"ldr\\\":\\\"" + String(ldrValue) +
 "\\\",\\\"lm35\\\":\\\"" + String(lm35Value) +
 "\\\"}";
 int bufLength = obsInputMsg.length() + 1;
 char obsMsgBuffer[bufLength];
 obsInputMsg.toCharArray(obsMsgBuffer, bufLength);

 // Create the Observation object
 SentiloClient::Observation observation;
 observation.value = obsMsgBuffer;

 // Debug on Serial the observations value. Note that we must scape special characters
 Serial.print("[loop] Publishing actual sensors values as observations: ");
 Serial.println(obsMsgBuffer);

 // Publish the observation to Sentilo Platform
 statusCode = sentiloClient.publishObservation(providerId, sensorId, observation, apiKey, response);

 // Read response status and show an error if it is necessary
 if (statusCode !## 200) {
 Serial.print("[loop] [ERROR] Status code from server after publish the observations: ");
 Serial.println(statusCode);
 Serial.print("[loop] [ERROR] Response body from server after publish the observations: ");
 Serial.println(response);
 } else {
 Serial.println("[loop] Sensors observations published!");
 }

 delay(loopTimeout);
}

/** Emulate a possible LDR initialization process, if it is necessary **/
void setupLDR() {
 Serial.print("[setup] Setting up the LDR brightness sensor ");
 for (int i = 0; i < ldrSetupTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 delay(50);
}

/** Get the brightness value from th LDR **/
int getLdrValue() {
 return analogRead(LDR);
}

/** Emulate a possible LM35 initialization process, if it is necessary **/
void setupLM35() {
 Serial.print("[setup] Setting up the LM35 temperature sensor ");
 for (int i = 0; i < lm35SetupTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 delay(50);
}

/** Get the LM 35 temperature value in Celsius degrees **/
float getLM35Value() {
 int val = analogRead(LM35);
 float mv = (val / 1024.0) * 5000;
 float cel = mv / 10;
 //float farh = (cel * 9) / 5 + 32;
 return cel;
}

/** Setup the Sentilo Client object. This process also configures the network connection **/
void setupSetiloClient() {
 // Connect via DHCP
 Serial.print("[setup] Connecting to network via DHCP ");
 sentiloClient.dhcp();
 for (int i = 0; i < networkConnectionTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 Serial.println("[setup] Connection is now established!");
}

What can we see in this example? There’re some additions compared with
the first example.

	Setup Arduino and the SentilClient is the same of the first sample

	We’re making a sensors setup, but in this case it isn’t necessary, so
it only informs us in debug mode what is happening in every moment…

	Into the loop

	We’re retrieving the LDR and LM35 values, and putting them into
variables

	Once we’ve retrieved the sensors data, we’re mounting the new
observation message, with value:
{"ldr":"{ldrValue}","lm35":"{lm35Value}"}

	The SentiloClient library gets the value and transforms it on a
complete observation message using the publishObservation
method (see below)

	The sketch loops sleeps until loopTimeout millis has been
reached, and then turns up and repeats the same process of data
publication (in this example the sleep time is 60000ms, 1 minute per
loop / publish)

This is the observation sended by to the Sentilo platform:

{"observations":[{
 "value":"{\"ldr\":\"{ldrValue}\",\"lm35\":\"{lm35Value}\"}"
 }]
}

If you want, you can include the timestamp varriable in UTC format
inside the observation object:

Observation observation;
observation.value = {"ldr":"382","lm35":"23.4"};
observation.timestamp = "05/05/2015T12:34:45";

And the message will be generated as:

{"observations": [{
 "value":"{\"ldr\":\"382\",\"lm35\":\"23.4\"}",
 "timestamp":"05/05/2015T12:34:45"
 }]
}

As you can see, the library object Observation (struct type) offers you
an abstraction. In the next sample we will see them in working together
with the Sensor object.

Third example: initialize sensor, create it in the catalog and publish observations continuously

In this third example we’ll see that how the SentiloClient library can
create a sensor “on-the-fly” and publish obervations continuously. Next,
we’ll use the second example, plus a little bit of additional code that
help us to check if the sensor exists in the catalog, and if not create
it before publish observations. Open the sample code in File >
Examples > SentiloClient > SentiloClient-Example-03.

The code

You should see this code in the editor:

#include <Ethernet.h>
#include <SPI.h>

#include "SentiloClient.h"

/***/
/***** SENSORS *****************************/
/***/
int LDR = 0; // LDR input is A0
int LM35 = 5; // LM35 input is A5
const int ldrSetupTimeout = 10; // Time that LDR needs to be configures (dummy time)
const int lm35SetupTimeout = 10; // Time that LM35 needs to be configures (dummy time)

/***/
/***** SENTILO *****************************/
/***/
char* apiKey = "YOUR_API_KEY";
char* ip = "YOUR_IP_ADDRESS";
int port = YOUR_PORT;
char* componentId = "sample-component";
char* providerId = "samples-provider";
char* sensorId = "sample-sensor-arduino-03";

// The Sentilo Client object
SentiloClient sentiloClient = SentiloClient(ip, port);

/***/
/***** NETWORK *****************************/
/***/
const int networkConnectionTimeout = 30;

/***/
/***** BGLOBAL VARS ************************/
/***/
const int generalCalibrationTimeout = 1000; // Wait after system setup is complete
const int loopTimeout = 60000; // Loop timeout, time between observations publications (in ms)
String response = ""; // Rest call response (normaly as JSON message)
int statusCode = -1; // Rest call return code (the HTTP code)

boolean existsSensor = false;

void setup() {
 // Begin serial for debug purposes
 Serial.begin(9600);

 // Setup the LDR sensor
 setupLDR();

 // Setup the LM35 sensor
 setupLM35();

 // Setup the Sentilo Client
 // and network connection
 setupSetiloClient();

 // Setup the Sentilo sensor
 // and create it if doesn't exists
 setupSentiloSensor();

 // Waiting for the next release of the observation
 delay(generalCalibrationTimeout);
}

void loop() {
 if (existsSensor) {
 // If the sensor exists,
 // we can start publishing observations

 // Get the LDR value
 int ldrValue = getLdrValue();

 // Get the LM35 value
 float lm35Value = getLM35Value();

 // Create the observation input message
 // like this: {"ldr":"234","lm35":"24.5"}
 String obsInputMsg =
 "{\\\"ldr\\\":\\\"" + String(ldrValue) +
 "\\\",\\\"lm35\\\":\\\"" + String(lm35Value) +
 "\\\"}";
 int bufLength = obsInputMsg.length() + 1;
 char obsMsgBuffer[bufLength];
 obsInputMsg.toCharArray(obsMsgBuffer, bufLength);

 // Create the Observation object
 SentiloClient::Observation observation;
 observation.value = obsMsgBuffer;

 // Debug on Serial the observations value
 // Note that the message includes slashes (\) because we must scape special characters as "
 Serial.print("[loop] Publishing actual sensors values as observations: ");
 Serial.println(obsMsgBuffer);

 // Publish the observation to Sentilo Platform
 statusCode = sentiloClient.publishObservation(providerId, sensorId, observation, apiKey, response);

 // Read response status and show an error if it is necessary
 if (statusCode !## 200) {
 Serial.print("[loop] [ERROR] Status code from server after publish the observations: ");
 Serial.println(statusCode);
 Serial.print("[loop] [ERROR] Response body from server after publish the observations: ");
 Serial.println(response);
 } else {
 Serial.println("[loop] Sensors observations published!");
 }

 // Waiting for the next loop
 delay(loopTimeout);
 } else {
 // If the sensor does not exist and it could
 // not be created in the catalog, we must stop running
 Serial.println("[loop] [ERROR] Oops! The sensor doesn't exists, so I can't publish data to it...");
 Serial.println("[loop] [ERROR] I'm sorry with you, but now I'm going to halt...");
 Serial.println("[loop] [ERROR] Bye!");
 while (true) { }
 }
}

// Emulate a possible LDR initialization process, if it is necessary
void setupLDR() {
 Serial.print("[setup] Setting up the LDR brightness sensor ");
 for (int i = 0; i < ldrSetupTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 delay(50);
}

// Get the brightness value from th LDR
int getLdrValue() {
 return analogRead(LDR);
}

// Emulate a possible LM35 initialization process, if it is necessary
void setupLM35() {
 Serial.print("[setup] Setting up the LM35 temperature sensor ");
 for (int i = 0; i < lm35SetupTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 delay(50);
}

// Get the LM 35 temperature value in Celsius degrees
float getLM35Value() {
 int val = analogRead(LM35);
 float mv = (val / 1024.0) * 5000;
 float cel = mv / 10;
 //float farh = (cel * 9) / 5 + 32;
 return cel;
}

// Setup the Sentilo Client object
// This process also configures the network connection
void setupSetiloClient() {
 // Connect via DHCP
 Serial.print("[setup] Connecting to network via DHCP ");
 sentiloClient.dhcp();
 for (int i = 0; i < networkConnectionTimeout; i++) {
 Serial.print(".");
 delay(100);
 }
 Serial.println(" done!");
 Serial.println("[setup] Connection is now established!");
}

// Setup the Sentilo Sentor (this Arduino)
// If the sensor doesn't exists in the catalog, create it
void setupSentiloSensor() {
 Serial.println("[setup] Retrieving catalog info from Sentilo and search for the sensor...");

 // Get catalog data for the provider with the supplied api key
 statusCode = sentiloClient.getCatalog(apiKey, response);

 // If the server status response is not ok, show the error
 if (statusCode !## 200) {
 Serial.print("[setup] [ERROR] Status code from server getting catalog: ");
 Serial.println(statusCode);
 Serial.print("[setup] [ERROR] Response body from server getting catalog: ");
 Serial.println(response);
 } else {
 // If we get a correct response, we must search the sensor
 if (find_text(sensorId, response) >## 0) {
 // The sensor is in the catalog
 Serial.println("[setup] The sensor is in the catalog");
 existsSensor = true;
 } else {
 // The sensor isn't in the catalog, so we must create it
 Serial.println("[setup] The sensor isn't in the catalog, so let register it now...");

 // Create the basic Sentilo Sensor Object
 SentiloClient::Sensor sensor;
 sensor.sensor = sensorId;
 sensor.type = "status";
 sensor.dataType = "TEXT";
 sensor.component = componentId;
 sensor.componentType = "generic";
 sensor.location = "sensorLat sensorLng";

 // Call the SentiloClient Register Sensor function
 statusCode = sentiloClient.registerSensor(sensor, providerId, apiKey, response);

 // Read the server status response
 if (statusCode 200) {
 // If ok, the sensor has been yet created
 existsSensor = true;
 } else {
 // If nok, then we can't continue with the program
 existsSensor = false;
 Serial.print("[setup] [ERROR] Status code from server getting catalog: ");
 Serial.println(statusCode);
 Serial.print("[setup] [ERROR] Response body from server getting catalog: ");
 Serial.println(response);
 }
 }
 }
}

// Auxiliary function for search text in a String
int find_text(String needle, String haystack) {
 int foundpos = -1;
 for (int i = 0; (i < haystack.length() - needle.length()); i++) {
 if (haystack.substring(i, needle.length() + i) needle) {
 foundpos = i;
 }
 }
 return foundpos;
}

And finally, in the last example, we can see:

	Initialization is the same that in the other examples

	Before ending the initialization process, we search for the sensor in
the catalog:

	Into the setupSentiloSensor() method, the
sentiloClient.getCatalog retrieves all the catalog data
related to the provider, so we can now search for the value of our
sensor, in this case, sample-sensor-arduino-03, and we see
that it doesn’t exists in the catalog (you must not create it
manually!)

	Then, create it with sentiloClient.registerSensor, including a
Sensor object (see values below), if you want to publish its
location don’t forget to initialize the sensorLat and
sensorLng values!

	Once the sensor is created, we end the setup process and starts
the loop

	If there is any error registering the sensor, the serial prints
the error message and the server status code in the console

	In the loop, like in Example 2, retrieve sensors data (LDR and LM35),
and publish them as new sensor observation

Next, there is an example of Sensor object message with the example
values:

SentiloClient::Sensor sensor;
sensor.sensor = "sample-sensor-arduino-03";
sensor.type = "status";
sensor.dataType = "TEXT";
sensor.component = "sample-component";
sensor.componentType = "generic";
sensor.location = "41,385063 2,1734034";

And before invoking the Sentilo API Rest platform, the SentiloClient
library tansforms this object in a JSON message like this:

{"sensors":[{
 "sensor":"sample-sensor-arduino-03",
 "description":"",
 "type":"status",
 "dataType":"TEXT",
 "unit":"",
 "component":"sample-component",
 "componentType":"generic",
 "componentDesc":"",
 "location":"41,385063 2,1734034",
 "timeZone":"CET"
 }]
}

As you can see, the type is generic and the data type is text, because
this is the best way to publish any data without any format problem.

Technical FAQ

In which platforms has been Sentilo tested ?

The first deployment for the Barcelona City Council has been tested in
the following infraestructure:

	Four virtual machines, two for the front-ends and another two for the
back-end

	All of them use as operating system Ubuntu server LTS 12.04

	The real time database server(Redis) works with 16 GB of memory and
36 GB of hard disk

	The other three servers works with 4 GB of memory and 16 GB of hard
disk

Another deployment configuration should work properly, always keeping in
mind the expected load by the system. There is also a virtual
machine ready for use that can be used
for testing purposes.

I successfully published an observation, but I cannot see the data in catalog.

Check that the Catalog and Sentilo API Server are in the same timezone,
for example in UTC. Make sure the sentilo-server script has the
following VM option:

-Duser.timezone=UTC

Also, make sure that the Tomcat that hosts the Catalog application has
the same option, for example en $JAVA_OPTS variable.

Maps is not showing up in Catalog application

Recently Google changed it policy regarding Maps key. Please go to
https://developers.google.com/maps/documentation/javascript/get-api-key
and create one.

If you are using the last release of Sentilo(1.6) you can define the API
key inside the catalog-config.properties configuration file:

Google API key to use Google Maps
google.api.key=<your key>

I created a provider and immediately after that, an observation using the new provider’s token is rejected with 401 “Invalid credential”

The providers are activated in a background job that runs every 5
minutes. Please wait a moment :-)

The command mvn package appassembler:assemble fails.

You have to execute the command in the directory of the component you
want to install.

I think I installed Sentilo. How can I confirm all is up & running?.

You can use this script:

./scripts/testServerStatus.sh

You also might want to check Platform
Testing

If you installed everything on your local machine, you can access the
catalog at http://localhost:8080/sentilo-catalog-web and the REST API at
http://localhost:8081

Platform Testing

To check everything is properly configured and running, you can run the
following set of tests.

Infrastructure servers test

Status page

To validate that all services are up and running (Redis, MongoDB and
PubSub), you can access to the following catalog page:

http://ip:port/sentilo-catalog-web/status/

[image: status_170_001.jpg]

In this screen you can check the status independently for each Sentilo
main service. In each case it will be indicated, through a green status
message, the correct operation of the same. In the event either it is
not possible to connect to the service or there is an error, an error
message will be displayed .

Next screenshot shows to you an error connecting to the API:

[image: status_170_002.jpg]

Deactivating the status page

By default, the status page is enabled in your Sentilo instance.

To disable it, you must provide a JVM Tomcat parameter:

-Dsentilo.state_page.enabled=false

Then, the status page will be innaccessible:

[image: status_170_003.jpg]

Postman tests

To test the API REST services individually, you can also test end-end
funcionality with Postman [https://www.getpostman.com], or if you
prefer CLI, via
Newsman [https://www.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman]:

newman run postman-script.json -e postman-script-env.json --delay-request 2000 --reporters cli,json --reporter-json-export outputfile.json

where files postman-script.json and postman-script-env.json are
located in subdirectory
scripts/test [https://github.com/sentilo/sentilo/tree/master/scripts/test]
from your local copy of Sentilo.

This script provides tests all Sentilo REST API resources and can serve
you also as example of the API usage.

Use a Virtual Machine

A Sentilo sample instance is available for testing purposes distributed
as a Open Virtual Appliance file
(OVA [https://en.wikipedia.org/wiki/Open_Virtualization_Format]).

The appliance contains the 1.7.0 Sentilo release.

Components installed:

	Sentilo Catalog (web application)

	Sentilo Platform Server (REST API)

	Sentilo Relational Agent (saves the data to mySQL)

	Sentilo Alert Agent

	Sentilo Location Updater Agent

Two different distribution files are available:

	One designed for Virtual Box, available
here [http://www.sentilo.io/wordpress/?wpfb_dl=24]. It has been
tested using version 5.0.24.

	The second one, built for ESXI systems, available
here [http://www.sentilo.io/wordpress/?wpfb_dl=25]. It has been
tested using VMPlayer 12.5.5 and ESXI 6.0.

Please, keep in mind some important facts:

	The virtual machine credentials are sentilo/sentilo.

	You should config the network type as “Bridged Adapter”.

	When stopping the virtual machine, it should be done in a organized
way, in a Virtual Box environment you have to do this using the
option “Shutdown ACPI”. You could also do this from the command
line executing “sudo shutdown -h now”

After the virtual machine is started, all the sentilo services are
launched automatically. The IP of the virtual machine is assigned
automatically, to know which one is, enter into virtual machine and
execute the “ifconfig” conmmand. In some settings you might need to
port forward guest ports (essentially 8080 and 8081) and access them
from your host machine.

First steps:

	Review the README file located in /home/sentilo.

	The Catalog Console webapp will be ready to access in:
http://your_ip:8080/sentilo-catalog-web/ with a access credentials:
admin/1234

	The API Rest endpoint will be listening for requests in:
http://your_ip:8081

Index

 _images/users_170_001.jpg
& é NLIO st Bolorer

8 Organization

& Applications

€& Components

A Sensors / Actuators

& Alerts

B8 Alerts creation rules

Types of Sensors / Actustors

@ Types of components

Users

10 [E]emsperrege

detiter
B adme

B pltomuer
FER——
—

Showing 1to 4, from 4 records

Export to Excel

Administrador

Platform user

SuperAdmin user

User

sentilo@sentilo.org

sentilo@sentilo.org

Fllin@yourmail

user@sentilo.org

& admin ~

Filter’

Creation date

08/11/2013 09:26:22

08/11/2013 14:42:40

13/1/2015 13:34:38
28/11/2017 09:07:18

W< 1> m

lete sel New user

_images/users_170_0011.jpg
Statistics Explore ™

sentilo
ADMINISTRATION
@ Organizations
Types of Sensors / Actuators

@ Types of components

Users

10 [tems erpaee
et

m

p——

e

Jo—
—
sl
ot

avallirana

OO0 @ O 00 6E @0

avilafranca

o

Showing 1t0 10, from 34 records

Export to Excel

Name.
Admin

Admin Sentilo

Admin de UAjuntament de Terrassa
Administrador Aj. Comnella
Administrador Aj. Esplugues
Administrador Aj. Sant Joan Despi
Administrador Aj. Sant Just Desvern
Administrador Aj. Valliana
Administrador A} Vilafranca

Administrador A]. Vilanova

Filter’

sentilo@sentilo.org

so0@o0ccom

admin@sjterrassa.cat

admin@admin.com

admin@sjesplugues.cat

admin@sjsantioandespi.cat

admin@sjsantjust.cat

admin@sjvalirana.cat

sdmin@ajilafranca.cat

admin@ajvilanovs.cat

& sadmin ~

Creation date
20/05/2015 1629 CEST
10/11/2015 16:45 CET

01/10/2015 15:54 CEST
30/06/2017 11:28 CEST
05/10/2015 15:17 CEST
22/09/2015 13:51 CEST
29/09/2015 16:01 CEST
30/09/2015 00:00 CEST
08/10/2015 13:56 CEST
08/10/2015 13:55 CEST

12]3|a| > M

Delete selected [NEION

_images/universal_viewer_170_004.jpg
m @ 3675-FHW

Vehicles de neteja urbana
BOREALIT

12593 ° 17.8 km/h
o] ...
)

Distancia recorreg.

(1]

’ L0

_images/universal_viewer_170_005.jpg
Q Rambla de Sant Nebridi, 45, 08222 Terrassa, Barcelona, Spain

Imatges

- el @Museu de a Giencia
M v fes i de la Tecnica de |
-5 2 (-2
& Terrassa = Torrebonica
EL CENTRE S | Z Castellarnat
cart Ncads 2\
] 2 mm 3 -
$] o
M data G2017 Gl st Geogs.Necioral . T o Use Foport a map aor
Més recent Activity
3675-FHW-speed
60 o/ Velocitat del vehicle (km/h)

Velocitat del vehicle

17.8 km/h w0

20
271172017 271172017 2771172017

27/11/2017 12:32:35
27172017 2701172017 27712007 2712017 2771172017 2771172017 2771172017
122007 122914 122921 122930 12:29:39 122951 123003 123017 12:30:41 123057

27172017 271172017 277117201

271172017 2711172017
123120 123140 123235

123105 12:31:19

27/11/2017 12:29:07 Data fi: 27/11/2017 12:32:35 Numero de dades: 15

_images/users_170_002.jpg
Séﬁbilo Cr

@ Organization

& Applications

€& Components

A Sensors / Actuators

& Alerts

B Alerts creation rules

Types of Sensors / Actustors
@ Types of components.

Edit user

Details | Config params

Identifier

Password

Repeat

Name

Description

eMail

Active

Roles

platform_user

Platform user

PubSub platform user. Do not

remove itt

sentilo@sentilo.org

PLATFORM E‘

Back

av

& admin ~

_static/images/catalog_and_maps/organization_170_002.jpg
Map co

Zoom level

Latitude

Longitude

Map background color

14

41.4001221

2172839

#fc900

_images/users_170_0021.jpg
S’é\nb"o Statistics ~ Explore ™

8 Organizations
Types of Sensors / Actuators

@ Types of components

New user

Details | Configparams

Identifier

Password

Repeat

Name

Description

eMail

Active

Roles

Organization

sample_admin

Sample Admin User

Sample Admin User

sample@admin com

ADMIN E‘

Sample Organization E‘

& sadmin ~

_static/images/catalog_and_maps/providers_170_000.jpg
“This action wil delete all components, sensors and related alerts of the selected provider . Are you

_static/images/catalog_and_maps/provider-component-sensor.png
Provider

Component

Sensor

_static/images/catalog_and_maps/providers_170_001.jpg
& é NLIO st Bolorer

8 Organization

& Users

& Applications

& Components

A Sensors / Actuators

B Alerts.

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

testApp_provider

Details | Sensors/Actustors Components

Authorization Token
Description

HTTPS APIREST
Creation date
Updated date
Contact name

Contact email

Active subscriptions Documentation

5630932c5252147edcB860c2d667be5db0CD10325b6953ed5b323T28bec00=05

Provider to do integration tests

15/03/2013 08:48:42

Sentilo

sentilo@sentilo.org

& admin ~

B9 cdit provider

_static/images/catalog_and_maps/providers_170_0000.jpg
S’é\nb"o Statistics Explore ™ & admin ~

AommisaaTion Providers
8 Organizstion
& Users
10 E‘ items per page Filter
© Applications
= Prouders dentifier 4 Name Description Creation date:

& Components

[AGBAR AGBAR AGBAR 23/12/2013 14:32:23 CET
& Sensors Actuators
iliis [Asee AsPB Agncia Salut Publica Barcelona: uitat ambiental 05/10/2017 1057:22 CEST
= Alerts creation rules B Bcasa BAsA Bcash
 Types of Sensors / Actuators
S 5 [} JMC_TEST_PROVIDER JMC_TEST_PROVIDER JMC_TEST_PROVIDER 09/07/2015 11:44:00 CEST
ypes of component
METEQ METEQ Proveidor Meteo per proves Reg Terrassa 14/01/2016 10:07:00 CET
& perp 2
[MediAmbient Medi Ambient Proveidor de control de Medi Ambient 20/03/2013 00:00:00 CET
[] OT_STRESS_PROV_1 OT_STRESS_PROV_1 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[} OT_STRESS_PROV_2 OT_STRESS_PROV_2 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[] OT_STRESS_PROV_S OT_STRESS_PROV_3 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[samca SamCLA samcLa
Showing 1o 10, from 22 records W< 12 3> m
Export to Excel 2 New provider

_static/images/catalog_and_maps/providers_170_003.jpg
ADMINISTRATION
8 Organization
& Users

© Applications

= Provids

& Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules
 Types of Sensors / Actuators

@ Types of components

Provider001

D: Provider001

Details | Sensors /Actuators

0 [gtemspereee

Sensor Actuator

Ds_DV10

Ds_ETo

Ds_HR

D5_HRn

5P

Ds_PPT

Ds_RS

05T

D5_Tn

D5_Tx

~ Provider

Provider001

Provider0o1

Provider0o1

Provider001

Provider0o1

Provider0o1

Provider0o1

Provider0o1

Provider001

Provider0o1

Showing 1to 10, from 48 records

Export to Excel

Components Active subscriptions

&

ype

wind_direction_10_m

temperature.

Documentation

Public

true

true

true

true

true

true

true

true

true

true

State

online

online

online

online

online

online

online

online

online

online

Filter’

Substate

Back

_static/images/catalog_and_maps/providers_170_002.jpg
@ Applications
08 Components
A Sensors / Actuators
B Alerts
BB Alerts creation rules
Types of Sensors / Actustors

@ Types of components

testApp_provider

Details | Sensors/Actustors Components

Authorization Token

Deser

HTTPS API REST
Creation date
Updated date
Contactname

Contact email

Active subscriptions

Provider to do integration tests

15/03/2013 08:48:42

Sentilo

sentilo@sentilo.org

& user v

Back

_static/images/catalog_and_maps/route_viewer_170_002.jpg
&
&

e 2500-BTX

Autobds
TMESA

PT10M

Retard de I'autobiis

10

Linia autobis

225

Orientacid del vehi..

2m/s

Velocitat del vehicle

Carrer

S P A

OmC

_static/images/catalog_and_maps/route_viewer_170_001.jpg
ajone

z zx I
g p— I -
ek N
< e Monicag,

T — e T
\ \ i 2
w ‘) $
Car
1S de Agricuiny
o

G

carer SRS
\seice

Garer S

e Lo
5\ & |
-

'Map data ©2017 Google, Inst. Geogr. Nacional

Terms of Use _ Reporta map error

_static/images/catalog_and_maps/organization_170_001.jpg
Sgﬂbﬂo Statitics Explore ™ & admin

ADMIISTRATION Sentilo
Organization D: senti
& Users
% Applications Detail | Config params

= Providers

& Components

& Sensors / Actuators

o ed= Time zone cer
R Date format Ad/MMfyyyy HHimmss
Types of Sensors Actuators

Chart values number 15

@ Types of components

Zoom level 14

Latitude 14001221
272839

Map background color #fico00

_static/images/catalog_and_maps/new_provider_2.png
SENLIIO setis selrer

& admin ~

ADMINISTRATION New provider
8 Organization
& Users Identifier Required
% Applications Only letters, numbers, hyphens and underscores are allowed
Name
@ Components
& Sensors/ Actuators
Description
B Alerts
Types of Sensors / Actuators
@ Types of components
Contact info
Contact name Required
Contact email Required

-

_images/universal_viewer_170_002.jpg
e (ACLURGD \ g,

Map Satelite 3RON: Tl
% Q z
O 5 %

D ¥ WA T - ot g
Carer o Gatnly Gl 1, 08028 8wcs0 | Go | o | () Anotastor desarses >

/.;
/|

-
SIR L RS S o Sant/Adria <
IS > g GeBesos
YM,” LASAGRERA &
o S &L g
e EL GUINARDG it
3
P NI
“
\ o 24,
LCARCA | %,
PENITENTS "0{

~ PROVENCALS ¢

10 DELPOBLENOU
ché o
I 3 4 ” one " DiAGoNAL MA
P A N Mm@ i
® XTI R
&

GRACIA

L . LASAGRADA ¢ y _SANT MARTI
R VILA DE GRACIA KA 7 0
s o &
a0
AR
o
N e NN EL POBLENOU
3 % g
Park &
5 Plaga de Tetuan "
. X
I,
EIXAMPLE 5%,)%

Map data G2017 Google, Inst. Geogr. Nacional, Institut Cartografic d Catalunya | Terms of Use | Report a map emor

_images/universal_viewer_170_003.jpg
Analitzador de ¥arces ~

Sant Cugat 4 o
Wap | Satalita Mira-sol CLlvalies Travessera de Gracia, 68, 08006 Barcelona, Go | A |
Valldoreix \
Sant Andreu Meioresta
e Bar 147112 pare Natural ovsssis~Santa Coloma. Badalona
de la Serra de Grsmene(
W El Papiol de Collserola
\ Les Planes \
Sant Bartomeu |
s Quada / Vi
Fontpineda Pallel n,mng e @
aPama -\, iy k4
Lopama 2\ o el ! / B
\ GRACIA J
\ wiroroucn SANT MARTIZ
\ /) J
A Sant Viceng | / ExampLe
Can Castany. dels Horts” S / B e
ostioneom O 0
7 3) sl ston®
5 Esplugues/” ey S RS
\ Ge Llobregat - e
Rant Joar /' L'Hospitalc mosons €7
LaColomia\Despl de Llobregf o
el | 3 2
Torrelles de {{ Comella de
Llobregat _Llobregat
Sant Boi de ==
Liobregat t PSS
Sant Climent Parc Agrari el - e Yong e
bi& iobregat: Baix LI owgm 7 A e & S,
Y -~ 4 ot . +
/ £
\\ / ElPratde N =
il Map data 2017 Google, Inst. Geogr. Nacional | Terms of Use | Report a map eror

Llobregat

_images/status_170_003.jpg
s&ntilo

Statistics

Explore ™

Status page feature is disabled. Please, read the
documentation to learn how to enable it.

_images/universal_viewer_170_001.jpg
Dlern 9120

et o

EL'CAMP DE
L'ARPA DEL CLOT
X ¥

LA SAGRADA &
FAMILIA - ¢

ool
'@

FORT PIENC.

Map data ©2017 Google, Inst. Geagr. Nacional,

_static/images/catalog_and_maps/comp_tech_details.png
Detail | Technicaldetails | Additionalinformation Related components Sensors Actuators

Producer

Serial number

Powertype

‘Connectivity type:

Back]

_static/images/catalog_and_maps/comp_add_info.png
Details Technical details

Data

Comarca
Terme municipal

Provincia

Additional information | Related components

At Emporda
coLera

Girona

Sensors / Actuators

_static/images/catalog_and_maps/components_170_001.jpg
Sgﬁbllo Statistics Explore ™ & admin ~

AommisaaTion Components
8 Organizstion
& Users
10 B\lemsperpsge Filter
© Applications
= Providers Name * Description Provider Type Public ¢ Creation date
 Component
11300325 Acear = — 10/03/2014 03000 CET
& Sensors/ Actustors
i 11300440 AceAR () e 10032010
B hlerts reaton ules 11340509 Acear e 1003201 10:
 Types of Sensors Actuators
11300582 Acear e 10032014 10:
® Types of components
11340630 Acear e 10/032001
11300631 AceAr) e 10/0s/018000000CET
11300632 AceaR () i
11340658 AceAR fatse
11300671 Acear o
11300673 AceAR fatse
Showing 8100, from 258 records W <7 8o wlul > |m

Change accesstopublic | Change accessto private | New component

_static/images/catalog_and_maps/complex_data_170_001.jpg
2 & admin ~

SENLIIO setste s

. Carrer de Josep Pla, 93, 08019 Barcelona, Spain

¥ sample-component / generic / samples-provider
9 Location v B Images v

x NN

@

& =

& No photo yet

& ELCAMPDE
0L SRUET)/ 8 mosmons o

DEL POBLENOU Primark©

>
nu@mu MAJ

Zoss™ 2 L TEL FRONT,
st MARITIM

Miap data £2017 Google, Inst. Geogr. Nacionsl, nstiut Catografic e Cataunya | Term of Use | Report a map eror

© Mostrecert i petiity [Sersor rcucion -

complex-data-sensor (IR e status (: 478952645, "date": "2017-12-01T12:57:00.595Z", "sensors": [["id": 1, "type": "meteo’, "wind": { "speed’
Shatis 'S, "date" "2017-12-01T12:57:00.5952" }, "humity": { "level": 21}, ["id": 2, "type": "meteo’, "wind": "speed": 674, "direction": "SW", "date":
i é ,5962"], "humity™: { level™: 1931, { , "direction”

Elne] 711, {id":4, "typ
date: "2017-12-01T1257:00.5957', 4,"type": "metec, "wind": {"speed”: 76, +"2017-12.01T12:5T:00.5972"), "humity™: 2111}
sensorsi[0111212017 13:41:23 CE LRl 017-12.01712: wind": {“speed™: 34, "direction’: "SW, "date’

“level: 193}, ~

:16.6112","humity”

t "2017-12-01T12:

:16.6112"), "humity’

Ini date: 01/12/2017 13:57:31 CET

04/12/2017 13:57:31 CE lee)

Description Creation date: 04/11/2015 01:00:00 CET Location: Static

_static/images/catalog_and_maps/componenttypes_170_001.jpg
SeNuilo e

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

& Sensors Actustors
A Alerts

BB Alerts creation rules

 Types of Sensors Actuators

Explore ™

Component's typology

oo o

(=]

[—

Ide

electricity_meter

generic

meteo

Showing 1to 4, from 4 records

Export to Excel

Electricity meter

Generic

Meteo

Noise meter

Description

Generic component type

& admin ~

Filter’
Creation date
08/11/2013 11:28:01
08/11/2013 11:28:01
08/11/2013 11:28:01
08/11/2013 112801

K< 1>

_static/images/catalog_and_maps/components_170_002.jpg
ADMINISTRATION

& Organization
& Users

& Sensors / Actuators
& Alerts
=2 Alerts creation rules

Types of Sensors / Actuators

@ Types of components

001_D1
ID: DEMO.001_D1

Details | Technicaldetails Additionalinformation Related components Sensors / Actuators

a2 v
Organization
Type
Description
Provider oMo
Accesstype Private
Creation date 28/11/2017 09:54:57
Update date 28/11/2017 09:54:57
Togs
Location
@ Location v
o S .
- P — o Example
Ly o ElNacional @ A oot
»nal 0 . &
;*\“ - g Teatre Tivoli @~ o ?&c ‘H‘,

, & iutade s

(TR < Placa de Catalunya®

5

& L'ESQUERRA &

©/b & CDELEIXAMPLE Barcelona @

Lo Museu dArt o @
\ o & & 4 Contemporani de.. o

SRR GOTHIC QUARTER

Godgles” & CIUTAT VELLA . y1op dats 22017 Googie, Inst. Geogr Nacionsl, institut Cartografic de Catalunya | Terms of Use | Report amap error

_static/images/catalog_and_maps/delete_error.png
Unable to perform the requested action due to the
following error

Error details
You cant delete {0} type, because there are components using it

A Trace error

_static/images/catalog_and_maps/componenttypes_170_002.jpg
Séﬁbilo Satistis Explore>

ADMINISTRA

n
& Organization

& Users

© Applications

= Providers

& Components

A Sensors / Actuators
B Alerts

BB Alerts creation rules

/ Types of Sensors Actuators

New typology

Identifier
Name

Description

Photo

Icon

-

& admin ~

_static/images/catalog_and_maps/applications_170_003.jpg
ESE;(\tJH() Satistis Explore>

8 Organization

& Users

€& Components

A Sensors/ Actuators

B Alerts.

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

Details | Permissions Active subscriptions

10 [g]uemsperpae
Target
testapp

B testApp_provider

Showing 1t02, from 2 records

Export to Excel

& admin ~

Filter’

W< 1 >

_static/images/catalog_and_maps/applications_170_002.jpg
SBNLilo s

ADMINISTRATI

© Application: -

= Providers
@ Components

A& Sensors / Actuators

B Alerts

2 Alerts creation rules

Types of Sensors Actuators

@ Types of components

Explore ™

sentilo-catalog

Details | Permissions

HTTPS APIREST

Creation date
Updated date

Contact email

Active subscriptions

Catalog application

08/11/2013 13:15:01

sentilo@sentilo.org

& user v

Back

_static/images/catalog_and_maps/chart_controls.png
Q

_static/images/catalog_and_maps/stats_001.jpg
17,440

Active sensors
0Routers/ Gateways
2,132 Other

1,650,545,286

Requests processed
10,457 Orders
1,958,918 Alarms

11.87

Requests per second
3173 Max.daily average
1,912.07 Max. average

10

Active users
74 Providers
17 Applications

_static/images/catalog_and_maps/universal_viewer_170_001.jpg
Dlern 9120

et o

EL'CAMP DE
L'ARPA DEL CLOT
X ¥

LA SAGRADA &
FAMILIA - ¢

ool
'@

FORT PIENC.

Map data ©2017 Google, Inst. Geagr. Nacional,

_static/images/catalog_and_maps/stats_002.jpg
il Activity

Woss
10000 Woreso
W atarms
o Tjior R o iz Tjisjor ERd ERrg e a0t

I date: 27/11/2017 1515032 End date: 27/11/2017 17:23:33 Data points number: 20

_static/images/catalog_and_maps/universal_viewer_170_003.jpg
Analitzador de ¥arces ~

Sant Cugat 4 o
Wap | Satalita Mira-sol CLlvalies Travessera de Gracia, 68, 08006 Barcelona, Go | A |
Valldoreix \
Sant Andreu Meioresta
e Bar 147112 pare Natural ovsssis~Santa Coloma. Badalona
de la Serra de Grsmene(
W El Papiol de Collserola
\ Les Planes \
Sant Bartomeu |
s Quada / Vi
Fontpineda Pallel n,mng e @
aPama -\, iy k4
Lopama 2\ o el ! / B
\ GRACIA J
\ wiroroucn SANT MARTIZ
\ /) J
A Sant Viceng | / ExampLe
Can Castany. dels Horts” S / B e
ostioneom O 0
7 3) sl ston®
5 Esplugues/” ey S RS
\ Ge Llobregat - e
Rant Joar /' L'Hospitalc mosons €7
LaColomia\Despl de Llobregf o
el | 3 2
Torrelles de {{ Comella de
Llobregat _Llobregat
Sant Boi de ==
Liobregat t PSS
Sant Climent Parc Agrari el - e Yong e
bi& iobregat: Baix LI owgm 7 A e & S,
Y -~ 4 ot . +
/ £
\\ / ElPratde N =
il Map data 2017 Google, Inst. Geogr. Nacional | Terms of Use | Report a map eror

Llobregat

_static/images/catalog_and_maps/universal_viewer_170_002.jpg
e (ACLURGD \ g,

Map Satelite 3RON: Tl
% Q z
O 5 %

D ¥ WA T - ot g
Carer o Gatnly Gl 1, 08028 8wcs0 | Go | o | () Anotastor desarses >

/.;
/|

-
SIR L RS S o Sant/Adria <
IS > g GeBesos
YM,” LASAGRERA &
o S &L g
e EL GUINARDG it
3
P NI
“
\ o 24,
LCARCA | %,
PENITENTS "0{

~ PROVENCALS ¢

10 DELPOBLENOU
ché o
I 3 4 ” one " DiAGoNAL MA
P A N Mm@ i
® XTI R
&

GRACIA

L . LASAGRADA ¢ y _SANT MARTI
R VILA DE GRACIA KA 7 0
s o &
a0
AR
o
N e NN EL POBLENOU
3 % g
Park &
5 Plaga de Tetuan "
. X
I,
EIXAMPLE 5%,)%

Map data G2017 Google, Inst. Geogr. Nacional, Institut Cartografic d Catalunya | Terms of Use | Report a map emor

_static/images/catalog_and_maps/universal_viewer_170_005.jpg
Q Rambla de Sant Nebridi, 45, 08222 Terrassa, Barcelona, Spain

Imatges

- el @Museu de a Giencia
M v fes i de la Tecnica de |
-5 2 (-2
& Terrassa = Torrebonica
EL CENTRE S | Z Castellarnat
cart Ncads 2\
] 2 mm 3 -
$] o
M data G2017 Gl st Geogs.Necioral . T o Use Foport a map aor
Més recent Activity
3675-FHW-speed
60 o/ Velocitat del vehicle (km/h)

Velocitat del vehicle

17.8 km/h w0

20
271172017 271172017 2771172017

27/11/2017 12:32:35
27172017 2701172017 27712007 2712017 2771172017 2771172017 2771172017
122007 122914 122921 122930 12:29:39 122951 123003 123017 12:30:41 123057

27172017 271172017 277117201

271172017 2711172017
123120 123140 123235

123105 12:31:19

27/11/2017 12:29:07 Data fi: 27/11/2017 12:32:35 Numero de dades: 15

_static/images/catalog_and_maps/universal_viewer_170_004.jpg
m @ 3675-FHW

Vehicles de neteja urbana
BOREALIT

12593 ° 17.8 km/h
o] ...
)

Distancia recorreg.

(1]

’ L0

_static/images/catalog_and_maps/users_170_002.jpg
Séﬁbilo Cr

@ Organization

& Applications

€& Components

A Sensors / Actuators

& Alerts

B Alerts creation rules

Types of Sensors / Actustors
@ Types of components.

Edit user

Details | Config params

Identifier

Password

Repeat

Name

Description

eMail

Active

Roles

platform_user

Platform user

PubSub platform user. Do not

remove itt

sentilo@sentilo.org

PLATFORM E‘

Back

av

& admin ~

_static/images/catalog_and_maps/users_170_001.jpg
& é NLIO st Bolorer

8 Organization

& Applications

€& Components

A Sensors / Actuators

& Alerts

B8 Alerts creation rules

Types of Sensors / Actustors

@ Types of components

Users

10 [E]emsperrege

detiter
B adme

B pltomuer
FER——
—

Showing 1to 4, from 4 records

Export to Excel

Administrador

Platform user

SuperAdmin user

User

sentilo@sentilo.org

sentilo@sentilo.org

Fllin@yourmail

user@sentilo.org

& admin ~

Filter’

Creation date

08/11/2013 09:26:22

08/11/2013 14:42:40

13/1/2015 13:34:38
28/11/2017 09:07:18

W< 1> m

lete sel New user

_static/images/clients/arduino-mega-2560-r3.jpg

_static/images/catalog_and_maps/sensors_170_001.jpg
Details | Technicaldetails | Visual configuration Additional information Latest data

Data v
Producer DEMO
Model TaFso
Serial number 12385

Power type

_static/images/catalog_and_maps/sensors_170_000.jpg
SBNLilo e

ADMINISTRATION
& Organization
& Users

© Applications

= Providers

& Components

A& Alerts
= Alerts creation rules
Types of Sensors Actuators

@ Types of components

Explore ™

Sensors / Actuators

10 B ftems per page
Sensor Actuator
001_T1_TRAFFIC
001_T2_TRAFFIC
001_T3_TRAFFIC
001_Te_TRAFFIC
001_Ts_TRAFFIC
002_T1_TRAFFIC
002_T2_TRAFFIC

003_T1_TRAFFIC

(= Il e = = R e e R = Al |

003_T2_TRAFFIC

003_T3_TRAFFIC

o

Showing 1to 10, from 464 records

Export to Excel

~ Provider

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Type

Public State
false online
false online
false online
true online
true online
true online
true online
true online
true online
true online
Change state

P

o

Change access to public

& admin ~

Filter| Traffic

Creation date

12/09/2014 02:00:00 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:00 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:28 CEST

Change accesstoprivate | New sensor

_static/images/catalog_and_maps/sensors_170_003.jpg
Edit sensor

Details Technical details | Visual configuration | Additional information

Visual configuration v

Chartvalues number

e [

_static/images/catalog_and_maps/sensors_170_002.jpg
Details Technicaldetails Visualconfiguration Additional information Latest data

© Lastdata v
Date 30/11/2017 11:30:00
Datatype
Measurement unit %
Value 2
Back
all Activity v
T
@
B
©
B
»
s wmspon wmmo sywmr mapow wman s mjun ouaon oo Wamn oupon e awmn saon
asso00 G000 053000 260000 06000 o000 w7000 080000 083000 050000 053000 105000 05000 Tsa000 53000

Ini date: 30/11/2017 04:30:00 End date: 30/11/2017 11:30:00 Data points number: 15 <

Q
v

_static/images/catalog_and_maps/sensors_170_005.jpg
tdata
Date
Datatype

Measurement unit

Value

[®]

_static/images/catalog_and_maps/sensors_170_004.jpg
ADMINISTRATION
8 Organization
& Users

@ Applications

= Providers

8 Components

B Alerts
B Alerts creation rules
F Types of Sensors / Actuators

@ Types of components

complex-data-sensor

Details Technicaldetails Visual configuration Additionalinformation | Latest data

Date 04/12/2017 13:57:31 CE
Data type Text
Measurement unit
Value <
: 478952645, £
date: "2017-12-01T12:57:00.5957", 1
sensorsi[

:57:00,5952"

Back

PR EEE : { id": 4789052645, "date": "2017-12-01T12:57:00.5957", "sensors": [{ "id": 1, "type": "meteo, "wind":{ "speed": 34, "direction":
"SW", "date": "2017-12-01T12:57:00.5052" }, "hurmity": { "level": 21 }1,{ "id":2, "type": "meteo, "wind": { "speed": 674, "direction": "SW", "date":
"2017-12-01T12:57:00.5962" , "humity": { "level: 19 11, {"id": 3, "type": "meteo’, "wind": { "speed": 4, "direction": "SW", "date":
"2017-12-01T12:57:00.5962" }, "humity" { "level: 87 11, { "id": 4, "type": "meteo’, "wind": { "speed": 57, "direction": "SW", "date":
"2017-12-01T12:57:00.5972" , "humity" { level: 65 11, { id": 4, "type": "meteo’, "wind": { "speed": 76, "direction": "SW", "date":
"2017-12-01T1257:00.5972" }, "humity": 21 11}

(71" 478952645, "date”: "2017-12-01T1237:16.6102","sensor":{ "wind" "speed" 34, "direction’: "SW", "date":
"2017-12-01T12:37:16.6112" }, "humity”: { "level": 21 }}, { "wind": { "speed": 674, "direction": "SW", "date": "2017-12-01T12:37:16.6112" }, "humity": {

_static/images/catalog_and_maps/sensors_170_007.jpg
Lest data

Date
Datatype
Measurement unit

Value

04/12/2017 13:57:31 CE

1
1d: 478952645,
date: "2017-12-01T12:57:00.595",

_static/images/catalog_and_maps/sensors_170_006.jpg
astdata

Date

Data type
Measurement unit

Value

04/12/2017 13:57:31 CE

date: "2017-12-01T1257:00.595,

sensors:[

i

:00.595"

_static/images/catalog_and_maps/sensorstypes_170_002.jpg
SENLIIO seste sporer iy

AR New typology

& Organization

& Users Identifier
% Applications

= Providers Name

& Components
A Sensors/ Actuators Description
& Aerts

S Alerts creation rules

nsors / Actuate

Back

@ Types of components

_static/images/catalog_and_maps/sensorstypes_170_001.jpg
SeNLilo e

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

A& Sensors Actuators
B Alerts

B Alerts creation rules

@ Types of components

Explore ™

Types of Sensors / Actuators

10 [ems perpaee
i
J—
ity
povomete

status

(= D= e = R = R e |

temperature

B wind

Showing 1to 8, from 8 records

Export to Excel

4 Name Description
Anenometer
Humidity
Noisemeter
Pluviometer
Rein
status status
Temperature

Wind

& admin ~

Filter’

Creation date

08/11/2013 11

08/11/2013 1

08/11/2013 11:

08/11/2013 11

08/11/2013 11

10/07/2015 08:

08/11/2013 11:

08/11/2013 11:

W< 1>

_static/images/catalog_and_maps/sensor_detail.png
AOMNISTRATION demo_temperature_sensor

& Organization D: provi nent.d u n:
& users
Details ‘Technical details Visual configur: Additional information Latest data
@ Applications
= Providers Daia
@ Components Sreastaon
Sensor [Actuator demo_temperature_sensor
Description
A Alerts
Component provider.component
&= Alerts creation rules 55 type Public
& Active subscriptions Creation date 07/05/19 13:10:10 CEST
Types of Sensors / Actuators Updated date 07/05/19 13:15:39 CEST
@ Types of components Type [temperature |
& Federation services Tags
Data type
Measurement unit
Time zone
state [onine }
TTL (min) 1

_images/java_logo.jpg
= Java

_images/java_sample_4.jpg
(T ocathoe et mamplel T, +

B & ocohsisoenisampie E e oa

Observations:

free memory: 20.872
allocated memory: 36.536
‘max memory: 253.440
total free memory: 237.776

Success:

Observations sended successfully

Send observations.

_images/componenttypes_170_002.jpg
Séﬁbilo Satistis Explore>

ADMINISTRA

n
& Organization

& Users

© Applications

= Providers

& Components

A Sensors / Actuators
B Alerts

BB Alerts creation rules

/ Types of Sensors Actuators

New typology

Identifier
Name

Description

Photo

Icon

-

& admin ~

_images/delete_error.png
Unable to perform the requested action due to the
following error

Error details
You cant delete {0} type, because there are components using it

A Trace error

_images/organization_170_0011.jpg
Statistics Explore ™

séntilo

& o

tor

& Users
Types of Sensors / Actuators

@ Types of components

Organizations

10 [tems erpaee
enter

o

et

s

o
o
ol

ave

——

test

OO0 O 06 6E @0

sample_organization

o

Showing 1t0 10, from 19 records

Export to Excel

Name.
Aj.dOlost

Aj. de Mataré

Ajuntament de Vilafranca del Penedés
Ajuntament de Vilanova i la Geltrd
Castelldefels

Comells

DigA

Esplugues de Liobregat

Organitzacié de test

Sample Organization

Filter

 Description

Ajuntament d'Olost

Ajuntament de Mataré

Ajuntament de Vilafranca del Penedés

Ajuntament de Vilanova i la Geltr

Ajuntament de Castelldefels

Ajuntament de Comella de Liobregat

Diputacié de Barcelona

Ajuntament d Esplugues de Liobregat

Organitzacié de test

Asample organization

& sadmin ~

04/03/2016 11:15 CET
08/10/2015 13:54 CEST
08/10/2015 13:53 CEST

30/09/2015 15:26 CEST

cesT

30/09/2015 00:00 CEST

03/12/2015 10:53 CET

09/11/2015 12119 CET

< (1232

New organization

_images/organization_170_002.jpg
Map co

Zoom level

Latitude

Longitude

Map background color

14

41.4001221

2172839

#fc900

_images/new_provider_2.png
SENLIIO setis selrer

& admin ~

ADMINISTRATION New provider
8 Organization
& Users Identifier Required
% Applications Only letters, numbers, hyphens and underscores are allowed
Name
@ Components
& Sensors/ Actuators
Description
B Alerts
Types of Sensors / Actuators
@ Types of components
Contact info
Contact name Required
Contact email Required

-

_images/organization_170_001.jpg
Sgﬂbﬂo Statitics Explore ™ & admin

ADMIISTRATION Sentilo
Organization D: senti
& Users
% Applications Detail | Config params

= Providers

& Components

& Sensors / Actuators

o ed= Time zone cer
R Date format Ad/MMfyyyy HHimmss
Types of Sensors Actuators

Chart values number 15

@ Types of components

Zoom level 14

Latitude 14001221
272839

Map background color #fico00

_images/organization_170_0021.jpg
Sgnb"o Statistics Explore ™

ADMINISTRAT

& Users
Types of Sensors Actuators

@ Types of components

New organization
Details Configparams
dentifier
Name

Description

Contact name
Contacte email

Public

some_identifier

some_name

The description

somebody

somebody@mail. com

& sadmin

_static/minus.png

_images/organization_170_003.jpg
S’é\nb"o Statistics Explore ™

ADMINISTRATION New organization

Details | Configparams

Types of Sensors Actuators

@ Types of components

Time zone

Date format

Chartvalues number

Zoom level

Latitude

Longitude

Map background color

CET

dd/MMlyyyy HH:mm:ss

25

14

41.300205

2154007

#fc900

& sadmin

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_images/providers_170_001.jpg
& é NLIO st Bolorer

8 Organization

& Users

& Applications

& Components

A Sensors / Actuators

B Alerts.

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

testApp_provider

Details | Sensors/Actustors Components

Authorization Token
Description

HTTPS APIREST
Creation date
Updated date
Contact name

Contact email

Active subscriptions Documentation

5630932c5252147edcB860c2d667be5db0CD10325b6953ed5b323T28bec00=05

Provider to do integration tests

15/03/2013 08:48:42

Sentilo

sentilo@sentilo.org

& admin ~

B9 cdit provider

_images/providers_170_0011.jpg
Séﬁbilo Satistis Explore>

AoMmISTRATION
& Organization
& Users

© Applications

= P

@ Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules

Types of Sensors Actuators
@ Types of components

New provider

Identifier
Name

Description

HTTPS API REST

Contact info

Contact name

Contact email

& | myprovider_identifier
My Provider

The provider description

Somebody

somebody@sentio io

-

& asentilo ~

_images/providers_170_000.jpg
“This action wil delete all components, sensors and related alerts of the selected provider . Are you

_images/providers_170_0000.jpg
S’é\nb"o Statistics Explore ™ & admin ~

AommisaaTion Providers
8 Organizstion
& Users
10 E‘ items per page Filter
© Applications
= Prouders dentifier 4 Name Description Creation date:

& Components

[AGBAR AGBAR AGBAR 23/12/2013 14:32:23 CET
& Sensors Actuators
iliis [Asee AsPB Agncia Salut Publica Barcelona: uitat ambiental 05/10/2017 1057:22 CEST
= Alerts creation rules B Bcasa BAsA Bcash
 Types of Sensors / Actuators
S 5 [} JMC_TEST_PROVIDER JMC_TEST_PROVIDER JMC_TEST_PROVIDER 09/07/2015 11:44:00 CEST
ypes of component
METEQ METEQ Proveidor Meteo per proves Reg Terrassa 14/01/2016 10:07:00 CET
& perp 2
[MediAmbient Medi Ambient Proveidor de control de Medi Ambient 20/03/2013 00:00:00 CET
[] OT_STRESS_PROV_1 OT_STRESS_PROV_1 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[} OT_STRESS_PROV_2 OT_STRESS_PROV_2 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[] OT_STRESS_PROV_S OT_STRESS_PROV_3 Proveir per ales proves de carrega 06/06/2016 16:55:28 CEST
[samca SamCLA samcLa
Showing 1o 10, from 22 records W< 12 3> m
Export to Excel 2 New provider

_images/raspberrypi.jpeg

_images/raspi3.png

_images/providers_170_002.jpg
@ Applications
08 Components
A Sensors / Actuators
B Alerts
BB Alerts creation rules
Types of Sensors / Actustors

@ Types of components

testApp_provider

Details | Sensors/Actustors Components

Authorization Token

Deser

HTTPS API REST
Creation date
Updated date
Contactname

Contact email

Active subscriptions

Provider to do integration tests

15/03/2013 08:48:42

Sentilo

sentilo@sentilo.org

& user v

Back

_images/providers_170_003.jpg
ADMINISTRATION
8 Organization
& Users

© Applications

= Provids

& Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules
 Types of Sensors / Actuators

@ Types of components

Provider001

D: Provider001

Details | Sensors /Actuators

0 [gtemspereee

Sensor Actuator

Ds_DV10

Ds_ETo

Ds_HR

D5_HRn

5P

Ds_PPT

Ds_RS

05T

D5_Tn

D5_Tx

~ Provider

Provider001

Provider0o1

Provider0o1

Provider001

Provider0o1

Provider0o1

Provider0o1

Provider0o1

Provider001

Provider0o1

Showing 1to 10, from 48 records

Export to Excel

Components Active subscriptions

&

ype

wind_direction_10_m

temperature.

Documentation

Public

true

true

true

true

true

true

true

true

true

true

State

online

online

online

online

online

online

online

online

online

online

Filter’

Substate

Back

_images/route_viewer_170_001.jpg
ajone

z zx I
g p— I -
ek N
< e Monicag,

T — e T
\ \ i 2
w ‘) $
Car
1S de Agricuiny
o

G

carer SRS
\seice

Garer S

e Lo
5\ & |
-

'Map data ©2017 Google, Inst. Geogr. Nacional

Terms of Use _ Reporta map error

_static/ajax-loader.gif

_images/users_170_003.jpg
S’é\nb"o Statistics Explore ™

ADMINS

8 Organizations
Types of Sensors / Actuators

@ Types of components

New user

Details | Configparams

Time zone

Date format

CET

ddMMyyyy HH:mm'ss

& sadmin ~

_static/comment-bright.png

_images/provider-component-sensor.png
Provider

Component

Sensor

_images/sensors_170_002.jpg
Details Technicaldetails Visualconfiguration Additional information Latest data

© Lastdata v
Date 30/11/2017 11:30:00
Datatype
Measurement unit %
Value 2
Back
all Activity v
T
@
B
©
B
»
s wmspon wmmo sywmr mapow wman s mjun ouaon oo Wamn oupon e awmn saon
asso00 G000 053000 260000 06000 o000 w7000 080000 083000 050000 053000 105000 05000 Tsa000 53000

Ini date: 30/11/2017 04:30:00 End date: 30/11/2017 11:30:00 Data points number: 15 <

Q
v

_images/sensors_170_003.jpg
Edit sensor

Details Technical details | Visual configuration | Additional information

Visual configuration v

Chartvalues number

e [

_images/sensors_170_000.jpg
SBNLilo e

ADMINISTRATION
& Organization
& Users

© Applications

= Providers

& Components

A& Alerts
= Alerts creation rules
Types of Sensors Actuators

@ Types of components

Explore ™

Sensors / Actuators

10 B ftems per page
Sensor Actuator
001_T1_TRAFFIC
001_T2_TRAFFIC
001_T3_TRAFFIC
001_Te_TRAFFIC
001_Ts_TRAFFIC
002_T1_TRAFFIC
002_T2_TRAFFIC

003_T1_TRAFFIC

(= Il e = = R e e R = Al |

003_T2_TRAFFIC

003_T3_TRAFFIC

o

Showing 1to 10, from 464 records

Export to Excel

~ Provider

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Traffic

Type

Public State
false online
false online
false online
true online
true online
true online
true online
true online
true online
true online
Change state

P

o

Change access to public

& admin ~

Filter| Traffic

Creation date

12/09/2014 02:00:00 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:00 CEST

12/09/2014 14:47:28 CEST

12/09/2014 14:47:28 CEST

Change accesstoprivate | New sensor

_images/sensors_170_001.jpg
Details | Technicaldetails | Visual configuration Additional information Latest data

Data v
Producer DEMO
Model TaFso
Serial number 12385

Power type

_images/sensors_170_006.jpg
astdata

Date

Data type
Measurement unit

Value

04/12/2017 13:57:31 CE

date: "2017-12-01T1257:00.595,

sensors:[

i

:00.595"

_images/sensors_170_007.jpg
Lest data

Date
Datatype
Measurement unit

Value

04/12/2017 13:57:31 CE

1
1d: 478952645,
date: "2017-12-01T12:57:00.595",

_images/sensors_170_004.jpg
ADMINISTRATION
8 Organization
& Users

@ Applications

= Providers

8 Components

B Alerts
B Alerts creation rules
F Types of Sensors / Actuators

@ Types of components

complex-data-sensor

Details Technicaldetails Visual configuration Additionalinformation | Latest data

Date 04/12/2017 13:57:31 CE
Data type Text
Measurement unit
Value <
: 478952645, £
date: "2017-12-01T12:57:00.5957", 1
sensorsi[

:57:00,5952"

Back

PR EEE : { id": 4789052645, "date": "2017-12-01T12:57:00.5957", "sensors": [{ "id": 1, "type": "meteo, "wind":{ "speed": 34, "direction":
"SW", "date": "2017-12-01T12:57:00.5052" }, "hurmity": { "level": 21 }1,{ "id":2, "type": "meteo, "wind": { "speed": 674, "direction": "SW", "date":
"2017-12-01T12:57:00.5962" , "humity": { "level: 19 11, {"id": 3, "type": "meteo’, "wind": { "speed": 4, "direction": "SW", "date":
"2017-12-01T12:57:00.5962" }, "humity" { "level: 87 11, { "id": 4, "type": "meteo’, "wind": { "speed": 57, "direction": "SW", "date":
"2017-12-01T12:57:00.5972" , "humity" { level: 65 11, { id": 4, "type": "meteo’, "wind": { "speed": 76, "direction": "SW", "date":
"2017-12-01T1257:00.5972" }, "humity": 21 11}

(71" 478952645, "date”: "2017-12-01T1237:16.6102","sensor":{ "wind" "speed" 34, "direction’: "SW", "date":
"2017-12-01T12:37:16.6112" }, "humity”: { "level": 21 }}, { "wind": { "speed": 674, "direction": "SW", "date": "2017-12-01T12:37:16.6112" }, "humity": {

_images/sensors_170_005.jpg
tdata
Date
Datatype

Measurement unit

Value

[®]

_static/images/catalog_and_maps/alerts_170_000.jpg
Sgﬁbllo Statistics Explore & admin ~

AommisaaTion Alerts
& Organizstion
& Users
10 B\lemsperpsge Filter
© Applications
= Provders [l entifier 4 Typology Trigger type Adive © Creationdate

& Components

11 =31 tue 25/07/2013 00:00:00 CEST
A Sensors / Actuators
] AGBAR DI11UF0348358_GT 1460361455645 =3 fse 11/04/20160955815 CEST
= Alerts creaion ules AGBAR_D11UF1504501_GT_1460361491098 =3 e 11/04/20160955811 CEST
Types of Sensors / Actustors
La) #] AGBARDI1UFis0dseA GT_1460sidsesor =3 [
Sl
AGBAR_D11UF150522N_GT_ 1460361485457 =3 e 1yjosz0
£ AGBARDI1UHOOTITU_GT_1e6036idssiss =3 e 11/04/20160955815 CEST
[AGBARLDI1UIOS06GST_GT_14603614s5568 =3 e 11/04/20160955815 CEST
£ AGBARDIZTD107585S_GT_t4soseidszess =3 flse 11/04/201609:58:02 CEST
AGBAR_D12UG029430P_GT_1460361436355 =3 e 1yjos/z0
£ AGBAR DI2UGOS1631U_GT_ 146036142363 =3 e 1yjosz0
Showing 1to 10, from 143 records W< |1|2|s|as]|>|m
Export to Excel

New alert

_static/images/catalog_and_maps/alerts_massive_creation_confirm.png
Confirm rule creation

nerate a maximum of 4 alerts (alerts that already st will not be duplicated). s

_static/images/catalog_and_maps/alerts_massive_creation.png
AOMNISTRATION
& organization

& users

© pplcations

= Providers

& Components

& sensors Actuators

A& Alerts

= Alerts creation rules
 Types of Sensors / Actuators

@ Typesof components

New rules

Name

Description

Provider

Component type

sensor type
Expression

Trigger type

Expression to avaluate

rain_more_than_50

Triggers when it rains more

than|40mm.

sMC

pluviometer :|

Greater than

o (D

_static/images/catalog_and_maps/application_subscriptionsl.png
& Organization

& Users

@ Applcations

= Providers

& Components

A Sensors/ Actuators

B Alerts

Types of Sensors / Actuators.

@ Types of components

Platform demo

Details Permissions | Active Subscriptions.
10 |v|items perpage
Type Provider Sensor

DATA app_demo_provider ‘appdemo_sensor_test

‘Showing 1to 1, from 1 total records

Alarm

Endpoint.

it Y <

Back

_static/images/catalog_and_maps/alertsrules_170_000.jpg
s&ntilo

AoMmISTRATION
& Organization
& Users

© Applications
= Providers

& Components

& Sensors/ Actustors
B Alerts

Types of Sensors / Actuators

@ Types of components

Explore ™

Alerts creation rules

10

OO0 O @0

(]

-
ame
.
g s o

g e e
g s s 2
g ot T
Rt oo

WATER_RULE

Showing 1t07, from 7 records

Export to Excel

“ Provider

SAMCLA

sme

samples-provider

samples-provider

TITAN

METEO

AGBAR

Component type
meteo

meteo

meteo

water_meter

Sensortype

wind_direction_10_m

temperature

luminosity

humidity

atmospheric_pressure

water_meter

& admin ~

Filter’

Creation date

01/12/2015 16:26:33 CET

18/10/2016 12:05:45 CEST

18/10/2016 11:35:44 CEST

26/10/2017 14:07:33 CEST

14/03/2016 14:43:10 CET

> m

New rules

_static/images/catalog_and_maps/applications_170_001.jpg
Sgﬁbi|o Statistics Explore ™ & admin ~

ADMINISTRATION sentilo-catalog
& Organization
& Users

@ Appl

= Providers

o Details | Permissions Active subscriptions

& Components

& Sensors/ Actustors

e Authorization Token €956c302086a042dd0426b46265227305a6ceT4d0BTTI8bSE0260811025066
o opler Description Catalog application
 Types of Sensors / Actuators
HTTPS API REST
@ Types of components

Creation date 08/11/2013 13:15:01
Updated date

Contact emai sentilo@sentilo.org

S8 Editapplication

_static/images/catalog_and_maps/applications_170_000.jpg
séntilo

Statisties Explore™

AoMmISTRATION
8 Organization
& Users
@ Appi

= Providers

& Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules

Types of Sensors Actuators

@ Types of components

Applications

10 E\ items per page
dentifier

appDemo
GestioMediAmblent
GestoTransit
GestioRec
OT_STRESS_APP_1
OT_STRESS_APP_2
Reginteligent

samples-application

0O @ & 00068 O 0

connecta-catalog

nimbus-monitor

o

Showing 1to 10, from 13 records

Export to Bxcel

Demo dela plataforma

Gestio MediAmbient

GestioTransit

Gestié del Rec

OT_STRESS_APP_1

OT_STRESS_APP_1

Regintelligent

‘Samples Application

connecta-catalog

nimbus-monitor

“ Description

App demo de la plataforma

Gestid del Rec
Aplicaciér ales proves de carrega

Aplicaciér ales proves de carrega

App de regntelligent

Aplicacié de prova per a fer servir els codi d'exemple.
Aplicacié del cataleg

No borrar. Corresponde a a aplicacién monitor-web

Filter’

& admin ~

Creation date

22/02/2013 11:20:00 CET

21/03/2013 14:84:50 CET

21/03/2013 11:20:59 CET

06/06/2016 16:55:28 CEST

19/06/2013 14:53:00 CEST
09/04/2015 13:01:33 CEST
28/02/2013 14:15:00 CET

18/07/2016 15:14:43 CEST

€ |(1(2/32 M

New application

_static/images/catalog_and_maps/Organitzation_detail.png
Séﬁb"o Statisties Explore ™ & admin ~

ADMINISTRATION Sentilo
& Users
% Applications Detail | Config params

= Providers

& Components

& Sensors/ Actuators

A pers Description Sentilo tenant
 Types of Sensors / Actuators Contactname Filinyour contact detals
@ Types of components
Contacte email fillin@yourmail
Public true
Creation date 27/10/2015 1652
Creation user sentilo
Modification date 28/10/2015 11336
Update user sadmin

R cdit organization

_static/images/catalog_and_maps/ComponentsTypes_deleted.png
SBALIO e

AoMmisTRATION
& Organization

& Users

© Applications

= Providers

& Components

A Sensors / Actuators
B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

0 [eemsperpoe

dentiier
B clecticty_meter
O geneic

B mee

B e

‘Showing 1to 4, from 4 records

Export to Excel

4 Name
Electricity meter
Generic
Meteo

Noise meter

Description

Generic component type

& admin ~
© Confirmation
Typologies deleted

Filter
Creation date
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00

08/11/2013 00:00

Previos 1] Net—

LEEERTTEN New typology

_static/images/catalog_and_maps/alert_list.png
S é NLIlO setsis expiorer

ADMINISTRATION Alerts
& organization
& users

10 items perpage
© pplcations

= Providers Identifier
@& components

‘app_demo_provider_testsensorWind_CHANGE 1435918374799
& sensors Actuators

== Alerts creation rules -
stresstest_alert

Typesof sensors / Actuators
@ Typesof components testhlert

‘Showing 1to 4, from 4 records

Export to Excel

citer s
Trigger type. Active

true

true

& admin ~

Creation date

03/07/2015 12:12

30/06/2015 15:50

20/07/2016 10:12

25/09/2014 15:46

_static/images/catalog_and_maps/alert_edit2.png
& Organization

& Users

& Applications

o8 Components

A Sensors / Actuators

2B Alerts creation rules

Types of Sensors / Actuators

@ Types of components

New alert
Identifier
Name

Description

Active

Typology

Provider

Component

Sensorid / Actuator
Expression

Trigger type

Expression to evaluate

testAlertl

testAlert 1

Internal v

app_demo_provider -

testWind_Component v

testSensorwind

Greater than v

_images/route_viewer_170_002.jpg
&
&

e 2500-BTX

Autobds
TMESA

PT10M

Retard de I'autobiis

10

Linia autobis

225

Orientacid del vehi..

2m/s

Velocitat del vehicle

Carrer

S P A

OmC

_images/sensor_detail.png
AOMNISTRATION demo_temperature_sensor

& Organization D: provi nent.d u n:
& users
Details ‘Technical details Visual configur: Additional information Latest data
@ Applications
= Providers Daia
@ Components Sreastaon
Sensor [Actuator demo_temperature_sensor
Description
A Alerts
Component provider.component
&= Alerts creation rules 55 type Public
& Active subscriptions Creation date 07/05/19 13:10:10 CEST
Types of Sensors / Actuators Updated date 07/05/19 13:15:39 CEST
@ Types of components Type [temperature |
& Federation services Tags
Data type
Measurement unit
Time zone
state [onine }
TTL (min) 1

_images/sentilo_monitoring_deployment.png
SeNntillo |, Sentlo.
ctivity £s,
—_— Monitor Agent \ -
| @ Redis |
| @ MongoDB |

P — st 4
H RESTAPI | | 0% y’
e Elasticsearch

Caitalog\ Logstash

_images/stats_001.jpg
17,440

Active sensors
0Routers/ Gateways
2,132 Other

1,650,545,286

Requests processed
10,457 Orders
1,958,918 Alarms

11.87

Requests per second
3173 Max.daily average
1,912.07 Max. average

10

Active users
74 Providers
17 Applications

_images/sentilo-nodered2.png
+| | o debug

a Flow1

« atvanced
T

unesiany 3 oo) -

: 9 ~observations: arrayl1]

tesspase
ST timestong: 04/ 12/2017T03:54:05°

providerts: “opentrends

~ sentlo ensorTa: thermancte
L - - absarvations: arrayl
R e—

_images/sentilo_federation.png
’4" i.‘:&
RESTAPI = |resTar = ..i'
SeﬂbHO = sentllo - Sentilo
- Federati -
REST API Subscribed events eA:r:nlton Mgz%?yDB REST API
Catalog L) Catalog
Sentilo Instance A Sentilo Instance B

(emitter) (receiver)

_images/status_170_002.jpg
Sgﬁbilo Statisics Explore e

Status page
A Some Sentilo components are not working as expected

+ MongoDB database v

Connection to MongoDB s correctly configured

A Sentilo API REST server v

Please verify that AP| REST server is running properly and check that it i lstening on the same host and port which are configured in the Catalog file catalog-config.properties

A Redis database v

Please verify that Redis server is running properly and that you can log intoit, and review your Sentilo Redis configuration to ensure everything is correct (host, port and password). This configuration i located in the PubSub
filejedis-conig properties

_images/stats_002.jpg
il Activity

Woss
10000 Woreso
W atarms
o Tjior R o iz Tjisjor ERd ERrg e a0t

I date: 27/11/2017 1515032 End date: 27/11/2017 17:23:33 Data points number: 20

_images/status_170_001.jpg
Sgﬁbilo Statistics Bxplore™ e

Status page
¥ Your Sentilo instance i propery configured

+ MongoDB database

v
‘Connection to MongoDB s correctly configured

 Sentilo API REST server v
Connection to API REST server is correctly configured

 Redis database v

Connection to Redis s correctly configured

_static/images/architecture/arch4.jpg
Service Layer

= =, CatalogSyncTask

Credentials &

ListenerMessageContainer

|

SentiloRequestHandler

3a 3b

REDIS

_static/images/architecture/arch3.jpg
Thread
Listener
<8081>

Transport Layer

Task queue

|
Workers pool

_static/images/catalog_and_maps/ComponentsTypes.png
SENLilo s

AoMmisTRATION
& Organization

& Users

© Applications

= Providers

© Components

4 Sensors / Actuators

B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

10 E items per page
Identifier
electricity_meter
generic

meteo

o0 oo

‘Showing 1to 4, from 4 records

Export to Excel

Electricity meter

Generic

Meteo

Noise meter

Description

Generic component type.

& admin ~

Filter
Creation date.
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00

—Previous | 1| Next—

_static/images/catalog_and_maps/Changing_map_color.png
ngulo Stasics Explore

Sentilo SmartCities

Sentilo | SmartCities - Sensors and Actuators Platform

_static/images/catalog_and_maps/ComponentsTypes_delete.png

_static/images/catalog_and_maps/ComponentsTypes_create.png
Séntilo s

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

4 Sensors / Actuators
B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

10 E\ items per page
Identifier
air_quality

electricity_meter

OO0 ooao
ki
i

Showing 1to'5, from 5 records

Export to Excel

Air quality

Electricity meter

Generic:

Noise meter

Description

Lorem ipsum dolor si amet

‘Generic component type.

Filter

Creation date

06/11/20150:09

08/11/2013 00:00

08/11/2013 00:00

08/11/2013 00:00

08/11/2013 00:00

— Previous

lected

& admin ~
© Confirmation
Typology added

New typology

_static/images/architecture/arch1.jpg
APPS

Direct

*BCN Apps

* 3 party apps / systems
W/Protocol adapter:

* 0GC Compliant

= City SDK

~icity

W/Modules & Agents:
*Alerts *Events.
“Storage * Historian

Apps *Connectors ...
*Monitoring
« Audit
Other: Publish: Subscribed to:
« Catalog Mgmt «Data « Data changes
+ Data querys (virtual sensors) « Alerts
« Orders

* Alerts

DATA PROCESSING AGENTS

Publish: Subscribed to:
*Orders

W’ APIHTTP/Rest

_static/images/architecture/arch2.jpg
e |

Transport layer

_images/sensorstypes_170_002.jpg
SENLIIO seste sporer iy

AR New typology

& Organization

& Users Identifier
% Applications

= Providers Name

& Components
A Sensors/ Actuators Description
& Aerts

S Alerts creation rules

nsors / Actuate

Back

@ Types of components

_images/sentilo-nodered.png

_images/sensorstypes_170_001.jpg
SeNLilo e

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

A& Sensors Actuators
B Alerts

B Alerts creation rules

@ Types of components

Explore ™

Types of Sensors / Actuators

10 [ems perpaee
i
J—
ity
povomete

status

(= D= e = R = R e |

temperature

B wind

Showing 1to 8, from 8 records

Export to Excel

4 Name Description
Anenometer
Humidity
Noisemeter
Pluviometer
Rein
status status
Temperature

Wind

& admin ~

Filter’

Creation date

08/11/2013 11

08/11/2013 1

08/11/2013 11:

08/11/2013 11

08/11/2013 11

10/07/2015 08:

08/11/2013 11:

08/11/2013 11:

W< 1>

_images/Changing_map_color.png
ngulo Stasics Explore

Sentilo SmartCities

Sentilo | SmartCities - Sensors and Actuators Platform

_images/ComponentsTypes_delete.png

_images/ComponentsTypes_deleted.png
SBALIO e

AoMmisTRATION
& Organization

& Users

© Applications

= Providers

& Components

A Sensors / Actuators
B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

0 [eemsperpoe

dentiier
B clecticty_meter
O geneic

B mee

B e

‘Showing 1to 4, from 4 records

Export to Excel

4 Name
Electricity meter
Generic
Meteo

Noise meter

Description

Generic component type

& admin ~
© Confirmation
Typologies deleted

Filter
Creation date
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00

08/11/2013 00:00

Previos 1] Net—

LEEERTTEN New typology

_images/ComponentsTypes.png
SENLilo s

AoMmisTRATION
& Organization

& Users

© Applications

= Providers

© Components

4 Sensors / Actuators

B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

10 E items per page
Identifier
electricity_meter
generic

meteo

o0 oo

‘Showing 1to 4, from 4 records

Export to Excel

Electricity meter

Generic

Meteo

Noise meter

Description

Generic component type.

& admin ~

Filter
Creation date.
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00
08/11/2013 00:00

—Previous | 1| Next—

_images/ComponentsTypes_create.png
Séntilo s

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

4 Sensors / Actuators
B Alerts

 Types of Sensors / Actuators

Explore™

Component's typology

10 E\ items per page
Identifier
air_quality

electricity_meter

OO0 ooao
ki
i

Showing 1to'5, from 5 records

Export to Excel

Air quality

Electricity meter

Generic:

Noise meter

Description

Lorem ipsum dolor si amet

‘Generic component type.

Filter

Creation date

06/11/20150:09

08/11/2013 00:00

08/11/2013 00:00

08/11/2013 00:00

08/11/2013 00:00

— Previous

lected

& admin ~
© Confirmation
Typology added

New typology

_images/Organitzation_detail.png
Séﬁb"o Statisties Explore ™ & admin ~

ADMINISTRATION Sentilo
& Users
% Applications Detail | Config params

= Providers

& Components

& Sensors/ Actuators

A pers Description Sentilo tenant
 Types of Sensors / Actuators Contactname Filinyour contact detals
@ Types of components
Contacte email fillin@yourmail
Public true
Creation date 27/10/2015 1652
Creation user sentilo
Modification date 28/10/2015 11336
Update user sadmin

R cdit organization

_images/admin_organization_170_001.jpg
SENLIIO seste Epoe-

ADMINISTRATION

Organization

& Users
% Applications

= Providers

@ Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Sample Organization

Detall | Configparams Permissions to others

Description
Contact name
Contacte email

Publi

Creation date
Creation user
Modification date

Update user

Permissions from others

Asample organization
Somebody
somebody@example.com
true

09/11/2015 11:19:56
sadmin

09/11/2015 11:19:56

sadmin

& somple_admin ~

S8l Edit organization

_images/admin_permissions_170_001.jpg
Statistics Explore ™

s&ntilo

ADMINISTRATION

& Users
% Applications

= Providers

& Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Sample Organization

Permissionstoothers | Permissions from others

Detal Configparams.

10 E\ ftems per page
Organization 4 Entity Type

E sentilo sample_provider Read-Write

Showing 1to 1, from 1 records

Date

10/11/2015 15:38:36

Filter’

User

& sample_admin ~

sample_admin

Back

ove.

Add

nav.xhtml

 Table of Contents

 		
 Sentilo Documentation

 		
 Setup

 		
 Prerequisites

 		
 Download and build code

 		
 Download the source code from Github

 		
 Compiling and build artifacts

 		
 Without changing the default configuration

 		
 Changing default settings

 		
 Platform infrastructure

 		
 Default settings

 		
 Redis settings

 		
 MongoDB settings

 		
 MySQL settings

 		
 Tomcat settings

 		
 Elastisearch settings

 		
 openTSDB settings

 		
 Subscription/publication platform settings

 		
 Configuring logs

 		
 Platform installation

 		
 Installing the Web App Catalog

 		
 Installing subscription/publication server

 		
 Installing agents

 		
 Enable multi-tenant instance

 		
 Modify your Tomcat startup script

 		
 Edit the Catalog web.xml file

 		
 Enable anonymous access to REST API

 		
 What next?

 		
 Quickstart

 		
 Prequisites

 		
 Create a Provider, Component and a Sensor

 		
 Publish an Observation

 		
 Read your Observations

 		
 What next?

 		
 API Docs

 		
 General Model

 		
 Intro

 		
 Resources

 		
 Identifier

 		
 Representations

 		
 Operators

 		
 Reply

 		
 Security

 		
 Securing API requests

 		
 Securing Callbacks

 		
 Services

 		
 Alarm

 		
 Alert

 		
 Catalog

 		
 Data

 		
 Order

 		
 Subscription

 		
 Architecture

 		
 Sentilo platform

 		
 Key Concepts

 		
 Platform architecture

 		
 Integrations

 		
 Agents

 		
 Relational database agent

 		
 Alarm agent

 		
 Activity Monitor agent

 		
 Historian agent

 		
 Federation agent

 		
 Kafka agent

 		
 Node-red

 		
 Catalog and Maps

 		
 Introduction

 		
 Sentilo monitoring

 		
 Statistics

 		
 Universal viewer

 		
 Route viewer

 		
 Administration console

 		
 Organization

 		
 Applications

 		
 Providers

 		
 Components

 		
 Sensors

 		
 Alerts

 		
 Alerts creation rules

 		
 Users

 		
 Sensor types

 		
 Component types

 		
 Multi Tenant

 		
 Introduction

 		
 The Organization concept

 		
 Sentilo contexts

 		
 Organization console

 		
 Platform console

 		
 Anonymous access

 		
 Platform administration

 		
 Organization administration

 		
 Users administration

 		
 Component and Sensor types administration

 		
 Tenant administration

 		
 Organization administration

 		
 Tenant resources administration: unique identifiers

 		
 Applications

 		
 Providers

 		
 Clients

 		
 Java Client

 		
 Hardware

 		
 Software

 		
 The example

 		
 RaspberryPi Client

 		
 Hardware

 		
 Software

 		
 Setup the Raspi

 		
 The example

 		
 Arduino Client

 		
 Hardware

 		
 Software

 		
 Setup the Arduino

 		
 The example

 		
 Technical FAQ

 		
 In which platforms has been Sentilo tested ?

 		
 I successfully published an observation, but I cannot see the data in catalog.

 		
 Maps is not showing up in Catalog application

 		
 I created a provider and immediately after that, an observation using the new provider’s token is rejected with 401 “Invalid credential”

 		
 The command mvn package appassembler:assemble fails.

 		
 I think I installed Sentilo. How can I confirm all is up & running?.

 		
 Platform Testing

 		
 Infrastructure servers test

 		
 Status page

 		
 Postman tests

 		
 Use a Virtual Machine

_images/admin_permissions_170_004.jpg
séntilo

:
& Users
© Applications Detail Configparams Permissionsto others | Permissions from others

= Providers

9§ Components 10 E‘ items per page Filter,

& Sensors Actuators

& i 4 entity Type Date Visible onmap Visible on lst

= Alerts creation rules] sample_organization sample_provider ReadWrte 03/12/2017 1343 CET no yes

 Types of Sensors Actustors

B iy Showing 1.to31, from 1 records W <1 > m
Back | Showinmap | Hideinmap | Showinlist | Hideinlist

_images/alert_edit2.png
& Organization

& Users

& Applications

o8 Components

A Sensors / Actuators

2B Alerts creation rules

Types of Sensors / Actuators

@ Types of components

New alert
Identifier
Name

Description

Active

Typology

Provider

Component

Sensorid / Actuator
Expression

Trigger type

Expression to evaluate

testAlertl

testAlert 1

Internal v

app_demo_provider -

testWind_Component v

testSensorwind

Greater than v

_images/admin_permissions_170_002.jpg
SBALIO s e Al

(ATRORCRRATION Assign permissions to others
& Organizatio
& Users

Providers &
Applications
= Providers
€ Components s
& Sensors / Actuators organizations | (BRI 2
B Aerts some_name Al
= Alerts creation rules lomaea £

Valiirana -

Types of Sensors Actuators
@ Types of components Type | Read-Write E‘

Back | Add

_images/admin_permissions_170_003.jpg
Statistics

s&ntilo

ADMINISTRATION

% Applications
= Providers

@ Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Explore ™

Sample Organization

Detal Configparams.

10 [F]temsperrose
orgmition
SR

Showing 1to 1, from 1 records

Permissions to others

~ Entity

sample_provider

Permissions from others

Type

Read-Write

& somple_admin ~
© confirmation
Permissions added

Filter’
Date User
01/12/2017 10:43:04

sample_admin

W< 1>

_images/alerts_massive_creation.png
AOMNISTRATION
& organization

& users

© pplcations

= Providers

& Components

& sensors Actuators

A& Alerts

= Alerts creation rules
 Types of Sensors / Actuators

@ Typesof components

New rules

Name

Description

Provider

Component type

sensor type
Expression

Trigger type

Expression to avaluate

rain_more_than_50

Triggers when it rains more

than|40mm.

sMC

pluviometer :|

Greater than

o (D

_images/alerts_massive_creation_confirm.png
Confirm rule creation

nerate a maximum of 4 alerts (alerts that already st will not be duplicated). s

_images/alert_list.png
S é NLIlO setsis expiorer

ADMINISTRATION Alerts
& organization
& users

10 items perpage
© pplcations

= Providers Identifier
@& components

‘app_demo_provider_testsensorWind_CHANGE 1435918374799
& sensors Actuators

== Alerts creation rules -
stresstest_alert

Typesof sensors / Actuators
@ Typesof components testhlert

‘Showing 1to 4, from 4 records

Export to Excel

citer s
Trigger type. Active

true

true

& admin ~

Creation date

03/07/2015 12:12

30/06/2015 15:50

20/07/2016 10:12

25/09/2014 15:46

_images/alerts_170_000.jpg
Sgﬁbllo Statistics Explore & admin ~

AommisaaTion Alerts
& Organizstion
& Users
10 B\lemsperpsge Filter
© Applications
= Provders [l entifier 4 Typology Trigger type Adive © Creationdate

& Components

11 =31 tue 25/07/2013 00:00:00 CEST
A Sensors / Actuators
] AGBAR DI11UF0348358_GT 1460361455645 =3 fse 11/04/20160955815 CEST
= Alerts creaion ules AGBAR_D11UF1504501_GT_1460361491098 =3 e 11/04/20160955811 CEST
Types of Sensors / Actustors
La) #] AGBARDI1UFis0dseA GT_1460sidsesor =3 [
Sl
AGBAR_D11UF150522N_GT_ 1460361485457 =3 e 1yjosz0
£ AGBARDI1UHOOTITU_GT_1e6036idssiss =3 e 11/04/20160955815 CEST
[AGBARLDI1UIOS06GST_GT_14603614s5568 =3 e 11/04/20160955815 CEST
£ AGBARDIZTD107585S_GT_t4soseidszess =3 flse 11/04/201609:58:02 CEST
AGBAR_D12UG029430P_GT_1460361436355 =3 e 1yjos/z0
£ AGBAR DI2UGOS1631U_GT_ 146036142363 =3 e 1yjosz0
Showing 1to 10, from 143 records W< |1|2|s|as]|>|m
Export to Excel

New alert

_images/alertsrules_170_000.jpg
s&ntilo

AoMmISTRATION
& Organization
& Users

© Applications
= Providers

& Components

& Sensors/ Actustors
B Alerts

Types of Sensors / Actuators

@ Types of components

Explore ™

Alerts creation rules

10

OO0 O @0

(]

-
ame
.
g s o

g e e
g s s 2
g ot T
Rt oo

WATER_RULE

Showing 1t07, from 7 records

Export to Excel

“ Provider

SAMCLA

sme

samples-provider

samples-provider

TITAN

METEO

AGBAR

Component type
meteo

meteo

meteo

water_meter

Sensortype

wind_direction_10_m

temperature

luminosity

humidity

atmospheric_pressure

water_meter

& admin ~

Filter’

Creation date

01/12/2015 16:26:33 CET

18/10/2016 12:05:45 CEST

18/10/2016 11:35:44 CEST

26/10/2017 14:07:33 CEST

14/03/2016 14:43:10 CET

> m

New rules

_images/application_subscriptionsl.png
& Organization

& Users

@ Applcations

= Providers

& Components

A Sensors/ Actuators

B Alerts

Types of Sensors / Actuators.

@ Types of components

Platform demo

Details Permissions | Active Subscriptions.
10 |v|items perpage
Type Provider Sensor

DATA app_demo_provider ‘appdemo_sensor_test

‘Showing 1to 1, from 1 total records

Alarm

Endpoint.

it Y <

Back

_images/applications_170_000.jpg
séntilo

Statisties Explore™

AoMmISTRATION
8 Organization
& Users
@ Appi

= Providers

& Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules

Types of Sensors Actuators

@ Types of components

Applications

10 E\ items per page
dentifier

appDemo
GestioMediAmblent
GestoTransit
GestioRec
OT_STRESS_APP_1
OT_STRESS_APP_2
Reginteligent

samples-application

0O @ & 00068 O 0

connecta-catalog

nimbus-monitor

o

Showing 1to 10, from 13 records

Export to Bxcel

Demo dela plataforma

Gestio MediAmbient

GestioTransit

Gestié del Rec

OT_STRESS_APP_1

OT_STRESS_APP_1

Regintelligent

‘Samples Application

connecta-catalog

nimbus-monitor

“ Description

App demo de la plataforma

Gestid del Rec
Aplicaciér ales proves de carrega

Aplicaciér ales proves de carrega

App de regntelligent

Aplicacié de prova per a fer servir els codi d'exemple.
Aplicacié del cataleg

No borrar. Corresponde a a aplicacién monitor-web

Filter’

& admin ~

Creation date

22/02/2013 11:20:00 CET

21/03/2013 14:84:50 CET

21/03/2013 11:20:59 CET

06/06/2016 16:55:28 CEST

19/06/2013 14:53:00 CEST
09/04/2015 13:01:33 CEST
28/02/2013 14:15:00 CET

18/07/2016 15:14:43 CEST

€ |(1(2/32 M

New application

_images/applications_170_002.jpg
SBNLilo s

ADMINISTRATI

© Application: -

= Providers
@ Components

A& Sensors / Actuators

B Alerts

2 Alerts creation rules

Types of Sensors Actuators

@ Types of components

Explore ™

sentilo-catalog

Details | Permissions

HTTPS APIREST

Creation date
Updated date

Contact email

Active subscriptions

Catalog application

08/11/2013 13:15:01

sentilo@sentilo.org

& user v

Back

_images/applications_170_003.jpg
ESE;(\tJH() Satistis Explore>

8 Organization

& Users

€& Components

A Sensors/ Actuators

B Alerts.

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

Details | Permissions Active subscriptions

10 [g]uemsperpae
Target
testapp

B testApp_provider

Showing 1t02, from 2 records

Export to Excel

& admin ~

Filter’

W< 1 >

_images/applications_170_001.jpg
Sgﬁbi|o Statistics Explore ™ & admin ~

ADMINISTRATION sentilo-catalog
& Organization
& Users

@ Appl

= Providers

o Details | Permissions Active subscriptions

& Components

& Sensors/ Actustors

e Authorization Token €956c302086a042dd0426b46265227305a6ceT4d0BTTI8bSE0260811025066
o opler Description Catalog application
 Types of Sensors / Actuators
HTTPS API REST
@ Types of components

Creation date 08/11/2013 13:15:01
Updated date

Contact emai sentilo@sentilo.org

S8 Editapplication

_images/applications_170_0011.jpg
Séﬁbilo Statistis Explore>

8 Organization

& Users

€8 Components

A Sensors/ Actuators

B Alerts

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

New application

Identifier
Name

Description

HTTPS API REST

Contact email

| myapp_identifier
My Application

The application description

=]

somebody@sentio io

-

& asentilo ~

_images/arch3.jpg
Thread
Listener
<8081>

Transport Layer

Task queue

|
Workers pool

_images/arch4.jpg
Service Layer

= =, CatalogSyncTask

Credentials &

ListenerMessageContainer

|

SentiloRequestHandler

3a 3b

REDIS

_images/arch1.jpg
APPS

Direct

*BCN Apps

* 3 party apps / systems
W/Protocol adapter:

* 0GC Compliant

= City SDK

~icity

W/Modules & Agents:
*Alerts *Events.
“Storage * Historian

Apps *Connectors ...
*Monitoring
« Audit
Other: Publish: Subscribed to:
« Catalog Mgmt «Data « Data changes
+ Data querys (virtual sensors) « Alerts
« Orders

* Alerts

DATA PROCESSING AGENTS

Publish: Subscribed to:
*Orders

W’ APIHTTP/Rest

_images/arch2.jpg
e |

Transport layer

_static/images/platform_testing/status_170_001.jpg
Sgﬁbilo Statistics Bxplore™ e

Status page
¥ Your Sentilo instance i propery configured

+ MongoDB database

v
‘Connection to MongoDB s correctly configured

 Sentilo API REST server v
Connection to API REST server is correctly configured

 Redis database v

Connection to Redis s correctly configured

_static/images/multitenant/users_170_003.jpg
S’é\nb"o Statistics Explore ™

ADMINS

8 Organizations
Types of Sensors / Actuators

@ Types of components

New user

Details | Configparams

Time zone

Date format

CET

ddMMyyyy HH:mm'ss

& sadmin ~

_static/images/platform_testing/status_170_003.jpg
s&ntilo

Statistics

Explore ™

Status page feature is disabled. Please, read the
documentation to learn how to enable it.

_static/images/platform_testing/status_170_002.jpg
Sgﬁbilo Statisics Explore e

Status page
A Some Sentilo components are not working as expected

+ MongoDB database v

Connection to MongoDB s correctly configured

A Sentilo API REST server v

Please verify that AP| REST server is running properly and check that it i lstening on the same host and port which are configured in the Catalog file catalog-config.properties

A Redis database v

Please verify that Redis server is running properly and that you can log intoit, and review your Sentilo Redis configuration to ensure everything is correct (host, port and password). This configuration i located in the PubSub
filejedis-conig properties

_images/arduino-mega-2560-r3.jpg

_images/catalog-federation-config.png
ADMINISTRATION

Organization

Users.

Applications
Providers
Components

Sensors / Actuators

» =8 1

Alerts

Alerts creation rules.

Active subscriptions

Types of Sensors / Actuators

e v 8

Types of components

New federation

Identifier

Name

Description

FED-SENTILO-A-SENTILO-B

FED-SENTILO-A-SENTILO-B

Federation with Sentilo A

Sentilo federate configuration

Client application name.
Client application token

Endpoint

Contact info

Name

e-mail

senatilo-a@FFED-SENTILOA-SE
123qwe456rty789uio123qwed56

hitpu/sentilo-a.com:8081

Admin Sentilo A

admin@sentilo-a.com

-

_images/arch6.jpg
publish

_images/comp_tech_details.png
Detail | Technicaldetails | Additionalinformation Related components Sensors Actuators

Producer

Serial number

Powertype

‘Connectivity type:

Back]

_images/complex_data_170_001.jpg
2 & admin ~

SENLIIO setste s

. Carrer de Josep Pla, 93, 08019 Barcelona, Spain

¥ sample-component / generic / samples-provider
9 Location v B Images v

x NN

@

& =

& No photo yet

& ELCAMPDE
0L SRUET)/ 8 mosmons o

DEL POBLENOU Primark©

>
nu@mu MAJ

Zoss™ 2 L TEL FRONT,
st MARITIM

Miap data £2017 Google, Inst. Geogr. Nacionsl, nstiut Catografic e Cataunya | Term of Use | Report a map eror

© Mostrecert i petiity [Sersor rcucion -

complex-data-sensor (IR e status (: 478952645, "date": "2017-12-01T12:57:00.595Z", "sensors": [["id": 1, "type": "meteo’, "wind": { "speed’
Shatis 'S, "date" "2017-12-01T12:57:00.5952" }, "humity": { "level": 21}, ["id": 2, "type": "meteo’, "wind": "speed": 674, "direction": "SW", "date":
i é ,5962"], "humity™: { level™: 1931, { , "direction”

Elne] 711, {id":4, "typ
date: "2017-12-01T1257:00.5957', 4,"type": "metec, "wind": {"speed”: 76, +"2017-12.01T12:5T:00.5972"), "humity™: 2111}
sensorsi[0111212017 13:41:23 CE LRl 017-12.01712: wind": {“speed™: 34, "direction’: "SW, "date’

“level: 193}, ~

:16.6112","humity”

t "2017-12-01T12:

:16.6112"), "humity’

Ini date: 01/12/2017 13:57:31 CET

04/12/2017 13:57:31 CE lee)

Description Creation date: 04/11/2015 01:00:00 CET Location: Static

_images/chart_controls.png
Q

_images/comp_add_info.png
Details Technical details

Data

Comarca
Terme municipal

Provincia

Additional information | Related components

At Emporda
coLera

Girona

Sensors / Actuators

_images/componenttypes_170_001.jpg
SeNuilo e

AoMmISTRATION
& Organization

& Users

© Applications

= Providers

& Components

& Sensors Actustors
A Alerts

BB Alerts creation rules

 Types of Sensors Actuators

Explore ™

Component's typology

oo o

(=]

[—

Ide

electricity_meter

generic

meteo

Showing 1to 4, from 4 records

Export to Excel

Electricity meter

Generic

Meteo

Noise meter

Description

Generic component type

& admin ~

Filter’
Creation date
08/11/2013 11:28:01
08/11/2013 11:28:01
08/11/2013 11:28:01
08/11/2013 112801

K< 1>

_images/components_170_001.jpg
Sgﬁbllo Statistics Explore ™ & admin ~

AommisaaTion Components
8 Organizstion
& Users
10 B\lemsperpsge Filter
© Applications
= Providers Name * Description Provider Type Public ¢ Creation date
 Component
11300325 Acear = — 10/03/2014 03000 CET
& Sensors/ Actustors
i 11300440 AceAR () e 10032010
B hlerts reaton ules 11340509 Acear e 1003201 10:
 Types of Sensors Actuators
11300582 Acear e 10032014 10:
® Types of components
11340630 Acear e 10/032001
11300631 AceAr) e 10/0s/018000000CET
11300632 AceaR () i
11340658 AceAR fatse
11300671 Acear o
11300673 AceAR fatse
Showing 8100, from 258 records W <7 8o wlul > |m

Change accesstopublic | Change accessto private | New component

_images/components_170_002.jpg
ADMINISTRATION

& Organization
& Users

& Sensors / Actuators
& Alerts
=2 Alerts creation rules

Types of Sensors / Actuators

@ Types of components

001_D1
ID: DEMO.001_D1

Details | Technicaldetails Additionalinformation Related components Sensors / Actuators

a2 v
Organization
Type
Description
Provider oMo
Accesstype Private
Creation date 28/11/2017 09:54:57
Update date 28/11/2017 09:54:57
Togs
Location
@ Location v
o S .
- P — o Example
Ly o ElNacional @ A oot
»nal 0 . &
;*\“ - g Teatre Tivoli @~ o ?&c ‘H‘,

, & iutade s

(TR < Placa de Catalunya®

5

& L'ESQUERRA &

©/b & CDELEIXAMPLE Barcelona @

Lo Museu dArt o @
\ o & & 4 Contemporani de.. o

SRR GOTHIC QUARTER

Godgles” & CIUTAT VELLA . y1op dats 22017 Googie, Inst. Geogr Nacionsl, institut Cartografic de Catalunya | Terms of Use | Report amap error

_static/images/multitenant/providers_170_001.jpg
Séﬁbilo Satistis Explore>

AoMmISTRATION
& Organization
& Users

© Applications

= P

@ Components

& Sensors/ Actuators

B Alerts

= Alerts creation rules

Types of Sensors Actuators
@ Types of components

New provider

Identifier
Name

Description

HTTPS API REST

Contact info

Contact name

Contact email

& | myprovider_identifier
My Provider

The provider description

Somebody

somebody@sentio io

-

& asentilo ~

_static/images/multitenant/users_170_002.jpg
S’é\nb"o Statistics ~ Explore ™

8 Organizations
Types of Sensors / Actuators

@ Types of components

New user

Details | Configparams

Identifier

Password

Repeat

Name

Description

eMail

Active

Roles

Organization

sample_admin

Sample Admin User

Sample Admin User

sample@admin com

ADMIN E‘

Sample Organization E‘

& sadmin ~

_static/images/multitenant/users_170_001.jpg
Statistics Explore ™

sentilo
ADMINISTRATION
@ Organizations
Types of Sensors / Actuators

@ Types of components

Users

10 [tems erpaee
et

m

p——

e

Jo—
—
sl
ot

avallirana

OO0 @ O 00 6E @0

avilafranca

o

Showing 1t0 10, from 34 records

Export to Excel

Name.
Admin

Admin Sentilo

Admin de UAjuntament de Terrassa
Administrador Aj. Comnella
Administrador Aj. Esplugues
Administrador Aj. Sant Joan Despi
Administrador Aj. Sant Just Desvern
Administrador Aj. Valliana
Administrador A} Vilafranca

Administrador A]. Vilanova

Filter’

sentilo@sentilo.org

so0@o0ccom

admin@sjterrassa.cat

admin@admin.com

admin@sjesplugues.cat

admin@sjsantioandespi.cat

admin@sjsantjust.cat

admin@sjvalirana.cat

sdmin@ajilafranca.cat

admin@ajvilanovs.cat

& sadmin ~

Creation date
20/05/2015 1629 CEST
10/11/2015 16:45 CET

01/10/2015 15:54 CEST
30/06/2017 11:28 CEST
05/10/2015 15:17 CEST
22/09/2015 13:51 CEST
29/09/2015 16:01 CEST
30/09/2015 00:00 CEST
08/10/2015 13:56 CEST
08/10/2015 13:55 CEST

12]3|a| > M

Delete selected [NEION

_static/images/monitorization/sentilo_monitoring_deployment.png
SeNntillo |, Sentlo.
ctivity £s,
—_— Monitor Agent \ -
| @ Redis |
| @ MongoDB |

P — st 4
H RESTAPI | | 0% y’
e Elasticsearch

Caitalog\ Logstash

_static/images/multitenant/admin_permissions_170_001.jpg
Statistics Explore ™

s&ntilo

ADMINISTRATION

& Users
% Applications

= Providers

& Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Sample Organization

Permissionstoothers | Permissions from others

Detal Configparams.

10 E\ ftems per page
Organization 4 Entity Type

E sentilo sample_provider Read-Write

Showing 1to 1, from 1 records

Date

10/11/2015 15:38:36

Filter’

User

& sample_admin ~

sample_admin

Back

ove.

Add

_static/images/multitenant/admin_organization_170_001.jpg
SENLIIO seste Epoe-

ADMINISTRATION

Organization

& Users
% Applications

= Providers

@ Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Sample Organization

Detall | Configparams Permissions to others

Description
Contact name
Contacte email

Publi

Creation date
Creation user
Modification date

Update user

Permissions from others

Asample organization
Somebody
somebody@example.com
true

09/11/2015 11:19:56
sadmin

09/11/2015 11:19:56

sadmin

& somple_admin ~

S8l Edit organization

_static/images/multitenant/admin_permissions_170_003.jpg
Statistics

s&ntilo

ADMINISTRATION

% Applications
= Providers

@ Components

A Sensors / Actuators

B Alerts

BB Alerts creation rules

Types of Sensors / Actuators

@ Types of components

Explore ™

Sample Organization

Detal Configparams.

10 [F]temsperrose
orgmition
SR

Showing 1to 1, from 1 records

Permissions to others

~ Entity

sample_provider

Permissions from others

Type

Read-Write

& somple_admin ~
© confirmation
Permissions added

Filter’
Date User
01/12/2017 10:43:04

sample_admin

W< 1>

_static/images/multitenant/admin_permissions_170_002.jpg
SBALIO s e Al

(ATRORCRRATION Assign permissions to others
& Organizatio
& Users

Providers &
Applications
= Providers
€ Components s
& Sensors / Actuators organizations | (BRI 2
B Aerts some_name Al
= Alerts creation rules lomaea £

Valiirana -

Types of Sensors Actuators
@ Types of components Type | Read-Write E‘

Back | Add

_static/images/multitenant/applications_170_001.jpg
Séﬁbilo Statistis Explore>

8 Organization

& Users

€8 Components

A Sensors/ Actuators

B Alerts

B Alerts creation rules

Types of Sensors / Actustors

@ Types of components

New application

Identifier
Name

Description

HTTPS API REST

Contact email

| myapp_identifier
My Application

The application description

=]

somebody@sentio io

-

& asentilo ~

_static/images/multitenant/admin_permissions_170_004.jpg
séntilo

:
& Users
© Applications Detail Configparams Permissionsto others | Permissions from others

= Providers

9§ Components 10 E‘ items per page Filter,

& Sensors Actuators

& i 4 entity Type Date Visible onmap Visible on lst

= Alerts creation rules] sample_organization sample_provider ReadWrte 03/12/2017 1343 CET no yes

 Types of Sensors Actustors

B iy Showing 1.to31, from 1 records W <1 > m
Back | Showinmap | Hideinmap | Showinlist | Hideinlist

_static/images/multitenant/organization_170_002.jpg
Sgnb"o Statistics Explore ™

ADMINISTRAT

& Users
Types of Sensors Actuators

@ Types of components

New organization
Details Configparams
dentifier
Name

Description

Contact name
Contacte email

Public

some_identifier

some_name

The description

somebody

somebody@mail. com

& sadmin

_static/images/multitenant/organization_170_001.jpg
Statistics Explore ™

séntilo

& o

tor

& Users
Types of Sensors / Actuators

@ Types of components

Organizations

10 [tems erpaee
enter

o

et

s

o
o
ol

ave

——

test

OO0 O 06 6E @0

sample_organization

o

Showing 1t0 10, from 19 records

Export to Excel

Name.
Aj.dOlost

Aj. de Mataré

Ajuntament de Vilafranca del Penedés
Ajuntament de Vilanova i la Geltrd
Castelldefels

Comells

DigA

Esplugues de Liobregat

Organitzacié de test

Sample Organization

Filter

 Description

Ajuntament d'Olost

Ajuntament de Mataré

Ajuntament de Vilafranca del Penedés

Ajuntament de Vilanova i la Geltr

Ajuntament de Castelldefels

Ajuntament de Comella de Liobregat

Diputacié de Barcelona

Ajuntament d Esplugues de Liobregat

Organitzacié de test

Asample organization

& sadmin ~

04/03/2016 11:15 CET
08/10/2015 13:54 CEST
08/10/2015 13:53 CEST

30/09/2015 15:26 CEST

cesT

30/09/2015 00:00 CEST

03/12/2015 10:53 CET

09/11/2015 12119 CET

< (1232

New organization

_static/images/multitenant/organization_170_003.jpg
S’é\nb"o Statistics Explore ™

ADMINISTRATION New organization

Details | Configparams

Types of Sensors Actuators

@ Types of components

Time zone

Date format

Chartvalues number

Zoom level

Latitude

Longitude

Map background color

CET

dd/MMlyyyy HH:mm:ss

25

14

41.300205

2154007

#fc900

& sadmin

_static/images/clients/java_logo.jpg
= Java

_static/images/clients/arduino_sensors_board.png

_static/images/clients/raspberrypi.jpeg

_static/images/clients/java_sample_4.jpg
(T ocathoe et mamplel T, +

B & ocohsisoenisampie E e oa

Observations:

free memory: 20.872
allocated memory: 36.536
‘max memory: 253.440
total free memory: 237.776

Success:

Observations sended successfully

Send observations.

_static/images/integrations/arch6.jpg
publish

_static/images/clients/raspi3.png

_static/images/integrations/sentilo-nodered.png

_static/images/integrations/catalog-federation-config.png
ADMINISTRATION

Organization

Users.

Applications
Providers
Components

Sensors / Actuators

» =8 1

Alerts

Alerts creation rules.

Active subscriptions

Types of Sensors / Actuators

e v 8

Types of components

New federation

Identifier

Name

Description

FED-SENTILO-A-SENTILO-B

FED-SENTILO-A-SENTILO-B

Federation with Sentilo A

Sentilo federate configuration

Client application name.
Client application token

Endpoint

Contact info

Name

e-mail

senatilo-a@FFED-SENTILOA-SE
123qwe456rty789uio123qwed56

hitpu/sentilo-a.com:8081

Admin Sentilo A

admin@sentilo-a.com

-

_static/images/integrations/sentilo_federation.png
’4" i.‘:&
RESTAPI = |resTar = ..i'
SeﬂbHO = sentllo - Sentilo
- Federati -
REST API Subscribed events eA:r:nlton Mgz%?yDB REST API
Catalog L) Catalog
Sentilo Instance A Sentilo Instance B

(emitter) (receiver)

_static/images/integrations/sentilo-nodered2.png
+| | o debug

a Flow1

« atvanced
T

unesiany 3 oo) -

: 9 ~observations: arrayl1]

tesspase
ST timestong: 04/ 12/2017T03:54:05°

providerts: “opentrends

~ sentlo ensorTa: thermancte
L - - absarvations: arrayl
R e—

